留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双曲拉伸面上的流动及其热交换

A·艾哈迈德 S·阿司哈

A·艾哈迈德, S·阿司哈. 双曲拉伸面上的流动及其热交换[J]. 应用数学和力学, 2012, 33(4): 425-433. doi: 10.3879/j.issn.1000-0887.2012.04.004
引用本文: A·艾哈迈德, S·阿司哈. 双曲拉伸面上的流动及其热交换[J]. 应用数学和力学, 2012, 33(4): 425-433. doi: 10.3879/j.issn.1000-0887.2012.04.004
A.Ahmad, S.Asghar. Flow and Heat Transfer Over a Hyperbolic Stretching Sheet[J]. Applied Mathematics and Mechanics, 2012, 33(4): 425-433. doi: 10.3879/j.issn.1000-0887.2012.04.004
Citation: A.Ahmad, S.Asghar. Flow and Heat Transfer Over a Hyperbolic Stretching Sheet[J]. Applied Mathematics and Mechanics, 2012, 33(4): 425-433. doi: 10.3879/j.issn.1000-0887.2012.04.004

双曲拉伸面上的流动及其热交换

doi: 10.3879/j.issn.1000-0887.2012.04.004
详细信息
  • 中图分类号: O357.1;O414.19

Flow and Heat Transfer Over a Hyperbolic Stretching Sheet

  • 摘要: 研究不可压缩粘性流体,在双曲拉伸面上的边界层流动及其热传导.分别使用级数展开法和局部非相似(LNS)法,得到解析结果和数值结果,给出了表面摩擦和Nusselt数的解析结果和数值结果,并进行了互相比较.同时发现动量和热边界层厚度,随着离前缘距离的增加而减小.众所周知,线性拉伸项方程的解,可以作为双曲拉伸首次项方程的解.
  • [1] Altan T, Oh S I, Gegel H L. Metal Forming Fundamentals and Applications[M]. 85.Metals Park, Ohio: American Society for Metals, 1983.
    [2] Fisher E G. Extrusion of Plastics[M]. New York: John Wiley, 1976: 14-140.
    [3] Sakiadis B C. Boundary layer behavior on continuous solid surfaces[J]. American Institute of Chemical Engineers Journal, 1961, 7(1): 26-28.
    [4] Crane L J. Flow past a stretching plate[J]. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 1970, 21 (4): 645-647.
    [5] Dandapat B S, Singh S K. Thin film flow over a heated nonlinear stretching sheet in presence of uniform transverse magnetic field[J]. International Communications in Heat and Mass Transfer, 2011, 38(3): 324-328.
    [6] Labropulu F, Li D, Pop I. Non-orthogonal stagnation-point flow towards a stretching surface in a non-Newtonian fluid with heat transfer[J]. International Journal Thermal Sciences, 2010, 49(6): 1042-1050.
    [7] Fang T G, Zhang J, Yao S S. New family of unsteady boundary layers over a stretching surface[J]. Applied Mathematics and Computation, 2010, 217(8): 3747-3755.
    [8] Yao S S, Fang T G, Zhong Y F. Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 16(2): 752-760.
    [9] 纳丁 S,侯赛因 A. 同伦分析法求解非线性多孔收缩表面上黏性磁流体的流动[J]. 应用数学和力学, 2009, 30(12): 1473-1481.(Nadeem S, Hussain A. MHD flow of a viscous fluid on a non-linear porous shrinking sheet with homotopy analysis method[J]. Applied Mathematics and Mechanics(English Edition), 2009, 30 (12): 1569-1578.)
    [10] 阿里 F M, 纳扎尔 R, 阿里菲 N M, 波普 I. 考虑感应磁场影响时, 拉伸表面上的MHD驻点流动及热传递[J]. 应用数学和力学, 2011, 32(4): 391-399.( Ali F M, Nazar R, Arifin N M, Pop I. MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field[J]. Applied Mathematics and Mechanics(English Edition), 2011, 32(4): 409-418.)
    [11] Kechil S A, Hashim I. Series solution of flow over nonlinearly stretching sheet with chemical reaction and magnetic field[J]. Physics Letters A, 2008, 372(13): 2258-2263.
    [12] Hayat T, Qasim M, Abbas Z. Homotopy solution for the unsteady three-dimensional MHD flow and mass transfer in a porous space[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(9): 2375-2387.
    [13] Hayat T, Qasim M. Influence of thermal radiation and Joule heating on MHD flow of a Maxwell fluid in the presence of thermophoresis[J]. International Journal of Heat and Mass Transfer, 2010, 53(21/22): 4780-4788.
    [14] Ishak A. MHD boundary layer flow due to an exponentially stretching sheet with radiation effect[J]. Sains Malaysiana, 2011, 40(4): 391-395.
    [15] Patrick D W, Magyari E. Generalized crane flow induced by continuous surfaces stretching with arbitrary velocities[J]. Acta Mech, 2010, 209(3/4): 353-362.
    [16] Bognr G. Analytic solutions to the boundary layer problem over a stretching wall[J]. Computers and Mathematics With Applications, 2011, 61(8): 2256-2261.
    [17] Sparrow E M, Yu H S. Local non-similarity thermal boundary layer solution[J]. Trans ASME J Heat Transfer, 1971, 93(4): 328-334.
    [18] Sparrow E M, Quack H, Boerner C J. Local non-similarity boundary layer solution[J]. AIAA J, 1970, 8: 1936-1942.
    [19] Mahmood M, Asghar S, Hossain M A. Squeezed flow and heat transfer over a porous surface for viscous fluid[J]. Heat Mass Transfer, 2007, 44(2): 165-173.
    [20] Mushtaq M, Asghar S, Hossain M A. Mixed convection flow of second grade fluid along a vertical stretching flat surface with variable surface temperature[J]. Heat Mass Transfer, 2007, 43(10): 1049-1061.
    [21] Chen C K, Char M I. Heat transfer of a continuous stretching surface with suction and blowing[J]. J Math Anal Appl, 1988, 135(2): 568-580.
    [22] Fang T, Zhang J. Note on the heat transfer of flows over a stretching wall in porous media: exact solutions[J]. Transport in Porous Media, 2011, 86(2): 579-584.
  • 加载中
计量
  • 文章访问数:  1506
  • HTML全文浏览量:  123
  • PDF下载量:  827
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-22
  • 修回日期:  2011-11-24
  • 刊出日期:  2012-04-15

目录

    /

    返回文章
    返回