留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温作用下混凝土热-水-力耦合损伤分析模型

李忠友 刘元雪

李忠友, 刘元雪. 高温作用下混凝土热-水-力耦合损伤分析模型[J]. 应用数学和力学, 2012, 33(4): 444-459. doi: 10.3879/j.issn.1000-0887.2012.04.006
引用本文: 李忠友, 刘元雪. 高温作用下混凝土热-水-力耦合损伤分析模型[J]. 应用数学和力学, 2012, 33(4): 444-459. doi: 10.3879/j.issn.1000-0887.2012.04.006
A Coupled Thermo-Hygro-Mechanical Damage Model for Concrete Subjected to High Temperatures[J]. Applied Mathematics and Mechanics, 2012, 33(4): 444-459. doi: 10.3879/j.issn.1000-0887.2012.04.006
Citation: A Coupled Thermo-Hygro-Mechanical Damage Model for Concrete Subjected to High Temperatures[J]. Applied Mathematics and Mechanics, 2012, 33(4): 444-459. doi: 10.3879/j.issn.1000-0887.2012.04.006

高温作用下混凝土热-水-力耦合损伤分析模型

doi: 10.3879/j.issn.1000-0887.2012.04.006
基金项目: 国家自然科学基金资助项目(50309017)
详细信息
    通讯作者:

    李忠友(1983—),男,辽宁阜新人,博士生(E-mail: lizhongyou0726@sina.com);刘元雪(1969—),男,教授,博士生导师(联系人. E-mail: lyuanxew@vip.sina.com).

  • 中图分类号: TL942

A Coupled Thermo-Hygro-Mechanical Damage Model for Concrete Subjected to High Temperatures

  • 摘要: 以混合物理论为基础建立了高温作用下混凝土的热-水-力耦合损伤分析模型.将混凝土视为由固体骨架、液态水、水蒸气、干燥气体和溶解气体共5种组分构成的混合物,模型的宏观平衡方程包括各组分的质量守恒方程、整体的能量守恒方程及动量守恒方程,模型所需的状态方程及本构关系全部给出,最后给出基于4个主要参数(固体骨架位移、气压力、毛细压力和温度)的控制方程.模型考虑了混凝土在高温作用下,水分的蒸发与冷凝、胶结材料的水化及脱水、溶解气的溶解与挥发等相变过程;从材料变形破坏过程中能量耗散特征入手,基于Lemaitre应变等价性假说和能量守恒原理得到力学损伤演化方程,并考虑了高温引起的热损伤对材料力学性能及力学损伤演化规律的影响,建立了热-力耦合损伤本构模型.
  • [1] Schrefler B A, Brunello P, Gawin D, Majorana C E, Pesavento F. Concrete at high temperature with application to tunnel fire[J]. Computational Mechanics, 2002, 29(l): 43-51.
    [2] Guian S K. Fire and life safety provisions for a long vehicular tunnel[J]. Tunneling and Underground Space Technology, 2004, 19(4/5): 316.
    [3] Christian F, Matthias A, Günter H. Numerical simulation of the load-carrying behavior of RC tunnel structures exposed to fire[J]. Finite Elements in Analysis and Design, 2009, 45(12): 958-965.
    [4] Bazant Z P, Kaplan M F. Concrete at High Temperatures: Material Properties and Mathematical Models[M]. Longman: Harlow Press, 1996.
    [5] Gawin D, Pesavento F, Schrefler B A. Towards prediction of the thermal spalling risk through a multi-phase porous media model of concrete[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41/43): 5707-5729.
    [6] Ulm F J, Coussy O, Bazant Z P. The “Chunnel” fire—Ⅰ: chemoplastic softening in rapidly heated concrete[J]. Journal of Engineering Mechanics, 1999, 125(3): 272-282.
    [7] Kalifa P, Menneteau F D, Quenard D. Spalling and pore pressure in HPC at high temperatures[J]. Cement and Concrete Research, 2000, 30(12): 1915-1927.
    [8] Kodur V K R, Phan L. Critical factors governing the fire performance of high strength concrete systems[J]. Fire Safety Journal, 2007, 42(6/7): 482-488.
    [9] Baggio P, Majorana C E, Schrefler B A. Thermo-hygro-mechanical analysis of concrete[J]. International Journal for Numerical Methods in Fluids, 1995, 20(6): 573-595.
    [10] Gawin D, Majorana C E, Schrefler B A. Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature[J]. Mechanics of Cohesive-Frictional Materials, 1999, 4(1): 37-74.
    [11] Gawin D, Pesavento F, Schrefler B A. Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation[J].Computer Methods in Applied Mechanics and Engineering, 2003, 192: 1731-1771.
    [12] Tenchev R, Purnell P. An application of a damage constitutive model to concrete at high temperature and prediction of spalling[J]. International Journal of Solids and Structures, 2005, 42(26): 6550-6565.
    [13] LI Xin-kui, LI Rong-tao, Schrefler B A. A coupled chemo-thermo-hygro-mechanical model of concrete at high temperature and failure analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(7): 635-681.
    [14] Bary B, Ranc G, Durand S, Carpentier O. A coupled thermo-hydro-mechanical-damage model for concrete subjected to moderate temperatures[J]. International Journal of Heat and Mass Transfer, 2008, 51(11/12): 2847-2862.
    [15] Luzio G D, Cusatis G. Hygro-thermo-chemical modeling of high performance concrete—Ⅰ: theory.Ⅱ: Numerical implementation, calibration, and validation[J]. Cement and Concrete Composites, 2009, 31(5):301-324.
    [16] Pont S D, Meftah F, Schrefler B A. Modeling concrete under severe conditions as a multiphase material[J]. Nuclear Engineering and Design, 2011, 24(3): 562-572.
    [17] Harmathy T Z. Effect of moisture on the fire endurance of building elements[J]. ASTM Special Technical Publication, 1965, 385: 74-95.
    [18] Anderberg Y. Cracking phenomena of HPC and OC[C]Phan L T, Carino N J, Duthinh D, Garboczi E. Proceedings of Workshop on Fire Performance of High-Strength-Concrete. Gaithersburg, NIST, 1997: 69-73.
    [19] Schrefler B A, Khoury G A, Gawin D, Majorana C E. Thermo-hydro-mechanical modelling of high performance concrete at high temperatures[J]. Engineering Computations, 2002, 19(7): 787-819.
    [20] Thomas H R, Sansom M R. Fully coupled analysis of heat, moisture and air transfer in unsaturated soil[J]. Journal of Engineering Mechanics, 1995, 121(3): 392-405.
    [21] Nechnech W, Meftah F, Reynouard J M. An elasto-plastic damage model for plain concrete subjected to high temperature[J]. Engineering Structures, 2002, 24(5): 597-611.
    [22] Bowen R M. Theory of Mixtures[M]. New York: Academic Press, 1976.
    [23] Lewis R W, Schrefler B A. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media[M]. Chichester: Wiley & Sons, 1998.
    [24] Gawin D, Schrefler B A. Thermo-hydro-mechanical analysis of partially saturated porous materials[J]. Engineering Computations, 1996, 13(7): 113-143.
    [25] Gregg S J, Sing K S W. Adsorption, Surface Area and Porosity[M]. London: Academic Press, 1982.
    [26] American Society of Heating Refrigerating and Air-Conditioning Engineers. ASHRAE Handbook, Fundamentals [M]. Atlanta, Unite States: American Society of Heating Refrigerating and Air-Conditioning Engineers, 1993.
    [27] Gray W G, Schrefler B A. Thermo dynamic approach to effective stress in partially saturated porous media[J]. European Journal of Mechanics - A/Solids, 2001, 20(4): 521-538.
    [28] Harmathy T Z, Allen W L. Thermal properties of selected masonry unit concretes[J]. ACI Journal, 1973, 70: 132-142.
    [29] Schneider U, Herbst H J. Permeabilitaet und porositaet von beton bei hohen temperaturen[J]. Deutscher Ausschuss Stahlbeton, 1989, 403: 23-52.(in German)
    [30] Furbish D J. Fluid Physics in Geology: an Introduction to Fluid Motions on Earth’s Surface and With in Its Crust[M]. Oxford: Oxford University Press, 1997.
    [31] 秦冰, 陈正汉, 方振东, 孙树国, 方祥位, 王驹. 基于混合物理论的非饱和土的热-水-力耦合分析模型[J]. 应用数学和力学, 2010, 31(12): 1476-1488. (QIN Bing, CHEN Zheng-han, FANG Zhen-dong, SUN Shu-guo, FANG Xiang-wei, WANG Ju. Analysis of coupled thermo-hydro-mechanical behavior of unsaturated soils based on theory of mixtures I[J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(12): 1561-1576.)
    [32] CHEN Yi-feng, ZHOU Chuang-bing, JING Lan-ru. Modeling coupled THM processes of geological porous media with multiphase flow: theory and validation against laboratory and field scale experiments[J]. Computers and Geotechnics, 2009, 36(8): 1308-1329.
    [33] Bear J. Dynamics of Fluids in Porous Media[M]. New York: Dover Press, 1988.
    [34] Mikhalyuk A V, Zakharov V V. Dissipation of dynamic-loading energy in quasi-elastic deformation processes in rocks[J]. Journal of Applied Mechanics and Technical Physics, 1996, 38(2):312-318.
    [35] Stefeler E D, Epstein J S, Conley E G. Energy partitioning for a crack under remote shear and compression[J]. International Journal of Fracture, 2003, 120(4): 563-580.
    [36] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报, 2005, 24(17): 3003-3010.(XIE He-ping, JU Yang, LI Li-yun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010. (in Chinese))
    [37] Lemaitre J. How to use damage mechanics[J]. Nuclear Engineering and Design, 1984, 80(3): 233-245.
    [38] 杨圣奇, 徐卫亚, 苏承东.大理岩三轴压缩变形破坏与能量特征研究[J].工程力学, 2007, 24(1): 136-142. (YANG Sheng-qi, XU Wei-ya, SU Cheng-dong. Study on the deformation failure and energy properties of marble specimen under triaxial compression[J]. Engineering Mechanics, 2007, 24(1):136-142. (in Chinese))
  • 加载中
计量
  • 文章访问数:  1475
  • HTML全文浏览量:  122
  • PDF下载量:  821
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-13
  • 修回日期:  2011-12-12
  • 刊出日期:  2012-04-15

目录

    /

    返回文章
    返回