留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三相滞后对有球形空腔无限介质双温广义热弹性的影响

S·班尼克 M·卡诺尼亚

S·班尼克, M·卡诺尼亚. 三相滞后对有球形空腔无限介质双温广义热弹性的影响[J]. 应用数学和力学, 2012, 33(4): 460-474. doi: 10.3879/j.issn.1000-0887.2012.04.007
引用本文: S·班尼克, M·卡诺尼亚. 三相滞后对有球形空腔无限介质双温广义热弹性的影响[J]. 应用数学和力学, 2012, 33(4): 460-474. doi: 10.3879/j.issn.1000-0887.2012.04.007
Sukla Banik, M.Kanoria. Effects of Three-Phase-Lag on Two Temperature Generalized Thermoelasticity for an Infinite Medium With a Spherical Cavity[J]. Applied Mathematics and Mechanics, 2012, 33(4): 460-474. doi: 10.3879/j.issn.1000-0887.2012.04.007
Citation: Sukla Banik, M.Kanoria. Effects of Three-Phase-Lag on Two Temperature Generalized Thermoelasticity for an Infinite Medium With a Spherical Cavity[J]. Applied Mathematics and Mechanics, 2012, 33(4): 460-474. doi: 10.3879/j.issn.1000-0887.2012.04.007

三相滞后对有球形空腔无限介质双温广义热弹性的影响

doi: 10.3879/j.issn.1000-0887.2012.04.007
详细信息
  • 中图分类号: O343.6

Effects of Three-Phase-Lag on Two Temperature Generalized Thermoelasticity for an Infinite Medium With a Spherical Cavity

  • 摘要: 就各向同性的无限弹性体,具有一个球形空腔时,从双温广义热弹性理论(2TT)角度,研究三相滞后热方程的热弹性相互作用问题.在三相滞后理论中,热传导方程是一个含时间四阶导数的、双曲型的偏微分方程.假设无限介质初始时静止,通过Laplace变换,将基本方程用向量矩阵微分方程的形式表示,然后通过状态空间法求解.将得到的通解应用于特殊问题:空腔边界上承受着热荷载(热冲击和坡型加热)和力学荷载.使用Fourier级数展开技术,实现Laplace变换的求逆.计算了铜类材料物理量的数值解.图形显示,两种模型:带能量耗散的双温Green-Naghdi理论(2TGNIII)和双温3相滞后模型(2T3相)明显不同.还对双温和坡型参数的影响进行了研究.
  • [1] Gurtin M E, Williams W O. On the clausius-duhem inequality[J]. Zeitschrift angewandte Mathematik und Physik, 1966, 17(5): 626-633.
    [2] Gurtin M E, Williams W O. An axiomatic foundation for continuum thermodynamics[J]. Archieve for Rational Mechanics and Analysis, 1967, 26(2): 83-117.
    [3] Chen P J, Gurtin M E. On a theory of heat conduction involving two temperatures[J]. Zeitschrift angewandte Mathematik und Physik, 1968, 19(4): 614-627.
    [4] Chen P J, Gurtin M E, Williams W O. A note on non simple heat conduction[J]. Zeitschrift für Angewandte Mathematik und Physik, 1968, 19(6): 969-970.
    [5] Chen P J, Gurtin M E, Williams W O. On the thermodynamics of non-simple elastic materials with two temperatures[J]. Zeitschrift für Angewandte Mathematik und Physik, 1969, 20(1): 107-112.
    [6] Warren W E, Chen P J. Wave propagation in two temperatures theory of thermoelasticity[J]. Acta Mechanica, 1973, 16(1/2): 83-117.
    [7] Lesan D. On the thermodynamics of non-simple elastic materials with two temperatures[J]. Journal of Applied Mathematics and Physics, 1970, 21(4): 583-591.
    [8] Puri P, Jordan P M. On the propagation of harmonic plane waves under the two-temperature theory[J]. International Journal of Engineering Sciences, 2006, 44(17): 1113-1126.
    [9] Quintanilla R. On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures[J].Acta Mechanica, 2004, 168(1/2): 61-73.
    [10] Lord H, Shulman Y. A generalized dynamical theory of thermoelasticity[J]. Journal of Mechanics and Physics of Solids, 1967, 15(5): 299-309.
    [11] Ignaczak J. Uniqueness in generalized thermoelasticity[J]. Journal of Thermal Stresses, 1979, 2(2): 171-175.
    [12] Ignaczak J. A note on uniqueness in thermoelasticity with one relaxation time[J]. Journal of Thermal Stresses, 1982, 5(3/4): 257-263.
    [13] Dhaliwal R S,Sherief H. Generalized thermoelasticity for anisotropic media[J]. Quarterly of Applied Mathematics, 1980,33: 1-8.
    [14] Sherief H. On uniqueness and stability in generalized thermoelasticity[J]. Quarterly of Applied Mathematics, 1987, 45: 773-778.
    [15] Ackerman C C, Bertman B, Fairbank H A, Guyer R A.Second sound in solid helium[J]. Physical Review Letter, 1967, 16(18): 789-309.
    [16] Ackerman C C, Guyer R A. Temperature pulses in dialectic solids[J]. Annals of Physics, 1968, 50(1): 128-185.
    [17] Ackerman C C,Overton Jr W C. Second sound in solid helium-3[J]. Physical Review Letter, 1969, 22(15): 764-766.
    [18] Von Gutfeld R J, Nethercot Jr A H. Temperature dependent of heat pulse propagation in saphire[J]. Physical Review Letter, 1966, 17(16): 868-871.
    [19] Guyer R A, Krumhansi J A. Solution of the linearized phonon Boltzmann equation[J]. Physical Review, 1966, 148(2):766-778.
    [20] Taylor B, Marris H J, Elbaum C. Phonon focusing in solids[J]. Physical Review Letter, 1969, 23(8): 416-419.
    [21] Rogers S J. Transport of heat and approach to second sound in some isotropically pure Alkali-Halide crystals[J].Physical Review B, 1971, 3(7): 1440-1457.
    [22] Jackson H E, Walker C T. Thermal conductivity, second sound and phonon-phonon interactions in NaF[J]. Physical Review B, 1971, 3(4): 1428-1439.
    [23] Jackson H E, Walker C T, McNelly T F. Second sound in NaF[J]. Physical Review Letter, 1970, 25(1): 26-28.
    [24] Green A E, Lindsay K A. Thermoelasticity[J]. Journal of Elasticity, 1972, 2(1): 1-7.
    [25] Ghosh M K, Kanoria M. Analysis of thermoelastic response in a functionally graded spherically isotropic hollow sphere based on Green-Lindsay theory[J]. Acta Mechanica, 2009, 207(1/2): 51-67.
    [26] Hetnarski R B, Ignaczak J. Generalized Thermoelasticity: closed form solutions[J]. Journal of Thermal Stresses, 1993, 16(4): 473-498.
    [27] Hetnarski R B, Ignaczak J. Generalized thermoelasticity: response of semi-space to a short laser pulse[J]. Journal of Thermal Stresses, 1994, 17(3): 377-396.
    [28] Green A E, Naghdi P M. A re-examination of the basic results of thermomechanics[J]. Proceedings: Mathematical and Physical Sciences, 1991, 432(2): 171-194.
    [29] Green A E, Naghdi P M. On undamped heat waves in an elastic solid[J]. Journal of Thermal Stresses, 1992, 15(2): 252-264.
    [30] Green A E, Naghdi P M. Thermoelasticity without energy dissipation[J]. Journal of Elasticity, 1993, 31(3): 189-208.
    [31] Bagri A, Eslami M R. Generalized coupled themo-elasticity of disks based on Lord-Shulman model[J].Journal of Thermal Stresses, 2004, 27(8): 691-704.
    [32] Kar A, Kanoria M. Thermoelastic interaction with energy dissipation in an infinitely extended thin plate containing a circular hole[J]. Far East Journal of Applied Mathematics, 2006, 24(2):201-217.
    [33] Kar A, Kanoria M. Thermoelastic interaction with energy dissipation in an unbounded body with a spherical hole[J]. International Journal of Solids and Structures, 2007, 44(9):2961-2971.
    [34] Kar A, Kanoria M. Thermoelastic interaction with energy dissipation in a transversely isotropic thin circular disc[J]. Europian Journal of Mechanics A/Solids, 2007, 26(6):969-981.
    [35] Das N C, Lahiri A. Thermo-elastic interactions due to prescribed pressure inside a spherical cavity in an unbounded medium[J]. International Journal of Pure and Applied Mathematics, 2000, 31(1): 19-32.
    [36] Roychoudhuri S K, Dutta P S. Thermoelastic interaction without energy sissipation in an infinite solid with distributed periodically varrying heat sources[J]. International Journal of Solids and Structures, 2005, 42(14): 4192-4203.
    [37] Roychoudhuri S K, Bandyopadhyay N. Thermoelastic wave propagation in a rotating elastic medium without energy dissipation[J]. International Journal of Mathematics and Mathematical Sciences, 2004, 1(1): 99-107.
    [38] Ghosh M K, Kanoria M. Generalized thermo-elastic problem of a spherically isotropic elastic medium containing a spherical cavity[J]. Journal of Thermal Stresses, 2008, 31(8): 665-679.
    [39] Tzou D Y. A unified field approach for heat conduction from macro to micro scales[J]. ASME Journal of Heat Transfer, 1995, 117(1): 8-16.
    [40] Chandrasekharaiah D S. Hyperbolic thermoelasticity: A review of recent literature[J]. Applied Mechanics Review, 1998, 51(12): 705-729.
    [41] Roychoudhuri S K. One-dimensional thermoelastic waves in elastic half-space with dual-phase-lag effects[J]. Journal of Mechanics of Materials and Structures, 2007, 2(1): 489-503.
    [42] Roychoudhuri S K. On a thermoelastic three-phase-lag model[J]. Journal of Thermal Stresses, 2007, 30(3): 231-238.
    [43] Kar A, Kanoria M. Generalized thermoelastic functionally graded orthotropic hollow sphere under thermal shock with three-phase-lag effect[J]. Europian Journal of Mechanics A/Solids, 2009, 28(4): 757-767.
    [44] Kar A, Kanoria M. Generalized thermoe-visco-elastic problem of a spherical shell with three-phase-lag effect[J]. Applied Mathematics and Modelling, 2009, 33(8): 3287-3298.
    [45] Quintanilla R, Racke R. A note on stability in three-phase-lag heat conduction[J]. International Journal of Heat and Mass Transfer, 2008, 51(1/2): 24-29.
    [46] Quintanilla R. Spatial behaviour of solutions of the three-phase-lag heat equation[J]. Applied Mathematics and Computation, 2009, 213(1): 153-162.
    [47] Youssef H M. Theory of two-temperature generalized thermoelasticity[J]. IMA Journal of Applied Mathematics, 2006, 71(3): 1-8.
    [48] Youssef H M, Al-Harby A H. State-space approach of two temperature generalized thermoelasticity of infinite body with a spherical cavity subjected to different type thermal loading[J]. Archives of Applied Mecha
  • 加载中
计量
  • 文章访问数:  1499
  • HTML全文浏览量:  105
  • PDF下载量:  887
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-20
  • 修回日期:  2011-10-15
  • 刊出日期:  2012-04-15

目录

    /

    返回文章
    返回