留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性转子-密封系统1∶2亚谐共振分岔研究

李忠刚 陈予恕

李忠刚, 陈予恕. 非线性转子-密封系统1∶2亚谐共振分岔研究[J]. 应用数学和力学, 2012, 33(4): 475-485. doi: 10.3879/j.issn.1000-0887.2012.04.008
引用本文: 李忠刚, 陈予恕. 非线性转子-密封系统1∶2亚谐共振分岔研究[J]. 应用数学和力学, 2012, 33(4): 475-485. doi: 10.3879/j.issn.1000-0887.2012.04.008
LI Zhong-gang, CHEN Yu-shu. Research on the 1∶2 Subharmonic Resonance and Bifurcation of the Nonlinear Rotor-Seal System[J]. Applied Mathematics and Mechanics, 2012, 33(4): 475-485. doi: 10.3879/j.issn.1000-0887.2012.04.008
Citation: LI Zhong-gang, CHEN Yu-shu. Research on the 1∶2 Subharmonic Resonance and Bifurcation of the Nonlinear Rotor-Seal System[J]. Applied Mathematics and Mechanics, 2012, 33(4): 475-485. doi: 10.3879/j.issn.1000-0887.2012.04.008

非线性转子-密封系统1∶2亚谐共振分岔研究

doi: 10.3879/j.issn.1000-0887.2012.04.008
基金项目: 国家自然科学基金资助项目(10632040)
详细信息
    通讯作者:

    李忠刚(1982—),男,黑龙江人,博士生(联系人.E-mail:lizhonggang2001@163.com).

  • 中图分类号: O322;TH133

Research on the 1∶2 Subharmonic Resonance and Bifurcation of the Nonlinear Rotor-Seal System

  • 摘要: 研究了转子-密封系统在气流激振力作用下的低频振动——1∶2亚谐共振现象.利用流体计算动力学(CFD)方法对转子-密封系统进行了流场模拟计算,辨识出适用于气流流场的Muszynska模型参数,并建立了转子-密封系统动力学方程.采用多尺度方法将系统进行3次截断,并得到系统响应.采用奇异性理论研究了系统的1∶2亚谐共振,进一步得到系统亚谐共振的分岔方程和转迁集,根据转迁集给出了在不同奇异性参数空间内的分岔图.同时,由分岔方程得到了亚谐共振非零解存在的条件.其分析结果对抑制转子-密封系统的亚谐振动有重要的工程意义.
  • [1] Dimarogonas A D, Gomez-Mancilla J C. Flow-excited turbine rotor instability[J]. International Journal of Rotating Machinery, 1994, 1(1): 37-51.
    [2] Marquette O R, Childs D W, San Andres L. Eccentricity effects on the rotordynamic coefficients of plain annular seals theory versus experiment[J]. ASME Journal of Tribology, 1997, 119(3): 443-447.
    [3] Klaus Kwanka. Dynamic coefficients of stepped labyrinth gas seals[J]. Journal of Engineering for Gas Turbines and Power, 2000, 122(3): 473-477.
    [4] Dietzed F J, Nordmann R. Calculating rotordynamic coefficients of seals by finite-difference techniques[J]. ASME Journal of Tribology, 1987, 109(3): 388-394.
    [5] Toshio H, GUO Zeng-lin, Gordon K R. Application of computational fluid dynamics analysis for rotating machinery—partⅡ: labyrinth seal analysis[J]. Journal of Engineering for Gas Turbine and Power, 2005, 127(4): 820-826.
    [6] Alford J S. Protecting turbo-machinery from self-excited whirl[J]. ASME Journal of Engineering for Power, 1956, 87(4): 333-344.
    [7] Rosenberg S S.Investigating aerodynamics transverse forces in labyrinth seals in cases involving rotor eccentricity[J].Energomashinostrojenie, l974, 8(8): 15-17.
    [8] Muszynska A. Whirl and whip rotor-bearing stability problems[J]. Journal of Sound and Vibration, 1986, 110(3): 443-462.
    [9] Ding Q, Cooper J E, Leung A Y T. Hopf bifurcation analysis of a rotor/seal system[J]. Journal of Sound and Vibration, 2002, 252(5): 817-833.
    [10] 刘晓锋, 陆颂元. 迷宫密封转子动特性三维CFD数值的研究[J].热能动力工程, 2006, 21(6): 635-639.(LIU Xiao-feng; LU Song-yuan. A Study of methods used for three-dimensional CFD (computational fluid dynamics) numerical analysis of dynamic characteristics of rotors with labyrinth seals[J]. Journal of Engineering for Thermal Energy and Power, 2006, 21(6): 635-639.(in Chinese))
    [11] Childs D W. Dynamic analysis of turbulent annular seals based on hirs lubrication equation[J].Journal of Lubrication Technology, 1983, 105(3): 429-436.
    [12] Golubistky M, Schaeffer D G. Singularities and Groups in Bifurcation Theory[M]. Vol Ⅰ, New York: Springer-Verlag, 1985.
  • 加载中
计量
  • 文章访问数:  1333
  • HTML全文浏览量:  103
  • PDF下载量:  798
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-30
  • 修回日期:  2012-02-16
  • 刊出日期:  2012-04-15

目录

    /

    返回文章
    返回