留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热泳和Brown运动对太阳能辐射下热分层纳米流体边界层流动的影响

N·安布泽志昂 K·斯里尼瓦桑 K·钱德拉塞卡兰 R·坎达沙密

N·安布泽志昂, K·斯里尼瓦桑, K·钱德拉塞卡兰, R·坎达沙密. 热泳和Brown运动对太阳能辐射下热分层纳米流体边界层流动的影响[J]. 应用数学和力学, 2012, 33(6): 726-739. doi: 10.3879/j.issn.1000-0887.2012.06.007
引用本文: N·安布泽志昂, K·斯里尼瓦桑, K·钱德拉塞卡兰, R·坎达沙密. 热泳和Brown运动对太阳能辐射下热分层纳米流体边界层流动的影响[J]. 应用数学和力学, 2012, 33(6): 726-739. doi: 10.3879/j.issn.1000-0887.2012.06.007
N.Anbuchezhian, K.Srinivasan, K.Chandrasekaran, R.Kandasamy. Thermophoresis and Brownian Motion Effects on Boundary-Layer Flow of a Nanofluid in the Presence of Thermal Stratification Due to Solar Energy[J]. Applied Mathematics and Mechanics, 2012, 33(6): 726-739. doi: 10.3879/j.issn.1000-0887.2012.06.007
Citation: N.Anbuchezhian, K.Srinivasan, K.Chandrasekaran, R.Kandasamy. Thermophoresis and Brownian Motion Effects on Boundary-Layer Flow of a Nanofluid in the Presence of Thermal Stratification Due to Solar Energy[J]. Applied Mathematics and Mechanics, 2012, 33(6): 726-739. doi: 10.3879/j.issn.1000-0887.2012.06.007

热泳和Brown运动对太阳能辐射下热分层纳米流体边界层流动的影响

doi: 10.3879/j.issn.1000-0887.2012.06.007
详细信息
  • 中图分类号: O357.1

Thermophoresis and Brownian Motion Effects on Boundary-Layer Flow of a Nanofluid in the Presence of Thermal Stratification Due to Solar Energy

  • 摘要: 在太阳辐射下的纳米流体中,数值地研究竖向延伸壁面具有可变流条件时的层流运动.使用的纳米流体模型为,在热分层中综合考虑了Brown运动和热泳的影响.应用一个特殊形式的Lie群变换,即缩放群变换,得到相应边值问题的对称群.对平移对称群得到一个精确解,对缩放对称群得到数值解.数值解依赖于Lewis数、Brown运动参数、热分层参数和热泳参数.得到结论:上述参数明显地影响着流场、温度和纳米粒子体积率的分布.显示出纳米流体提高了基流体热传导率和对流的热交换性能,基流体中的纳米粒子还具有改善液体辐射性能的作用,直接提高了太阳能集热器的吸热效率.
  • [1] Otanicar T P, Phelan P E, Golden J S. Optical properties of liquids for direct absorption solar thermal energy systems[J]. Solar Energy, 2009, 83(7): 969-977.
    [2] Richard K S, Lee S M. 800 hours of operational experience from a 2 kW solar dynamic system[C]Mohamed S El-Genk. Space Technology and Application International Forum,1999: 1426-1431.
    [3] Odeh S D, Behnia M, Morrison G L. Performance evaluation of solar thermal electric generation systems[J].Energy Conversion and Management, 2003, 44(4): 2425-2443.
    [4] Clausing A. Analysis of convective losses from cavity solar central receivers[J]. Solar Energy ,1981, 27(1): 295-300.
    [5] Dehghan A A, Behnia M. Combined natural convection conduction and radiation heat transfer in a discretely heated open cavity[J]. Journal of Heat Transfer, 1996, 118(1): 56-65.
    [6] Muftuoglu A, Bilgen E. Heat transfer in inclined rectangular receivers for concentrated solar radiation[J]. International Communications in Heat and Mass Transfer, 2008, 35(5): 551-556.
    [7] Kennedy C E. Review of mid- to high-temperature solar selective absorber materials
    [8] [R]. NREL/TP-520-31267, Golden CO. National Renewable Energy Laboratory, 2002.
    [9] Trieb F, Nitsch J. Recommendations for the market introduction of solar thermal power stations[J]. Renewable Energy, 1998, 14(1):17-22.
    [10] 林培锋, 林建忠. 纳米粒子在弯管中的输运和沉降特性[J].应用数学和力学, 2009, 30(10): 895-906.(LIN Pei-feng, LIN Jian-zhong. Prediction of nanoparticle transport and deposition in bends[J]. Applied Mathematics and Mechanics(English edition), 2009, 30(8): 957-968.)
    [11] LIN Jian-zhong, LIN Pei-feng, CHEN Hua-jun. Research on the transport and deposition of nanoparticles in a rotating curved pipe[J]. Physics of Fluids, 2009, 21(12):1-11.
    [12] Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles[J]. Netsu Bussei, 1993, 7(2):227-233.
    [13] Buongiorno J, Hu W. Nanofluid coolants for advanced nuclear power plants[C]Proceedings of ICAPP,05. Paper N05705.Seoul, 2005.
    [14] Buongiorno J. Convective transport in nanofluids[J]. ASME J Heat Transfer, 2006, 128(1): 240-250.
    [15] Kuznetsov A V, Nield D A. Natural convective boundary-layer flow of a nanofluid past a vertical plate[J]. Int J Thermal Sci, 2010, 49(2): 243-247.
    [16] Nield D A, Kuznetsov A V. The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid[J]. Int J Heat Mass Transfer, 2009, 52(25/26): 5792-5795.
    [17] Cheng P, Minkowycz W J. Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike[J]. J Geophys Res, 1977, 82(14): 2040-2044.
    [18] Oberlack M. Similarity in non-rotating and rotating turbulent pipe flows[J]. J Fluid Mech, 1999, 379: 1-22.
    [19] Bluman G W, Kumei M.Symmetries and Differential Equations[M]. NY: Springer-Verlag, 1989.
    [20] Pakdemirli M ,Yurusoy M. Similarity transformations for partial differential equations[J].SIAM Rev, 1998, 40(1): 96-101.
    [21] Aminossadati S M, Ghasemi B. Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure[J]. Eur J Mech B/Fluids, 2009, 28(5): 630-640.
    [22] Akira Nakayama, Hitoshi Koyama. Similarity solutions for buoyancy induced flows over a non-isothermal curved surface in a thermally stratified porous medium[J]. Applied Scientific Research, 1989, 46(1):309-314.
    [23] Brewster M Q. Thermal Radiative Transfer Properties[M]. NY: John Wiley & Sons, 1972.
    [24] Gill S. A process for the step-by-step integration of differential equations in an automatic digital computing machine[J]. Proceedings of the Cambridge Philosophical Society, 1951, 47(1):96-108.
    [25] Khan W A,Pop I. Boundary-layer flow of a nanofluid past a stretching sheet[J]. International Journal of Heat and Mass Transfer, 2010, 53(5):2477-2483.
    [26] Wang C Y. Free convection on a vertical stretching surface[J]. ZAMM, 1989, 69(3):418-420.
    [27] Gorla R S R, Sidawi I. Free convection on a vertical stretching surface with suction and blowing[J]. Appl Sci Res, 1994, 52(1): 247-257.
  • 加载中
计量
  • 文章访问数:  1754
  • HTML全文浏览量:  163
  • PDF下载量:  792
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-14
  • 修回日期:  2011-12-05
  • 刊出日期:  2012-06-15

目录

    /

    返回文章
    返回