留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面P波在弹性介质和非饱和多孔弹性介质分界面上的传播

陈炜昀 夏唐代 陈伟 翟朝娇

陈炜昀, 夏唐代, 陈伟, 翟朝娇. 平面P波在弹性介质和非饱和多孔弹性介质分界面上的传播[J]. 应用数学和力学, 2012, 33(7): 781-795. doi: 10.3879/j.issn.1000-0887.2012.07.001
引用本文: 陈炜昀, 夏唐代, 陈伟, 翟朝娇. 平面P波在弹性介质和非饱和多孔弹性介质分界面上的传播[J]. 应用数学和力学, 2012, 33(7): 781-795. doi: 10.3879/j.issn.1000-0887.2012.07.001
CHEN Wei-yun, XIA Tang-dai, CHEN Wei, ZHAI Chao-jiao. Propagation of Plane P-Waves at the Interface Between an Elastic Solid and an Unsaturated Poroelastic Medium[J]. Applied Mathematics and Mechanics, 2012, 33(7): 781-795. doi: 10.3879/j.issn.1000-0887.2012.07.001
Citation: CHEN Wei-yun, XIA Tang-dai, CHEN Wei, ZHAI Chao-jiao. Propagation of Plane P-Waves at the Interface Between an Elastic Solid and an Unsaturated Poroelastic Medium[J]. Applied Mathematics and Mechanics, 2012, 33(7): 781-795. doi: 10.3879/j.issn.1000-0887.2012.07.001

平面P波在弹性介质和非饱和多孔弹性介质分界面上的传播

doi: 10.3879/j.issn.1000-0887.2012.07.001
基金项目: 浙江省重点科技创新团队支持计划基金资助项目(2009R50050)
详细信息
    通讯作者:

    陈炜昀(1986—),男,江西丰城人,博士生(联系人.E-mail:vic-chen@126.com).

  • 中图分类号: TU443

Propagation of Plane P-Waves at the Interface Between an Elastic Solid and an Unsaturated Poroelastic Medium

  • 摘要: 使用线性粘滞的多孔弹性介质模型,解决在弹性介质和非饱和多孔弹性介质分界面上平面P波的反射与透射问题,这里的非饱和多孔介质中固体骨架被两种相互耦合的流体(液体和气体)所充满.通过势函数的方法得到了振幅反射系数与振幅透射系数.然后推导得到入射波与反射波、透射波之间能量转换情况.研究发现:用振幅比和能量比所表示的反射系数与透射系数是与入射角度、饱和度、入射频率以及上下层介质的弹性常数有关的方程式.数值计算通过图形的形式表达出来,而且入射角度、频率及饱和度对振幅和能量的反射与透射系数的影响分别进行了讨论.证明了在整个波的传播过程中分界处并没有发生能量的耗散.
  • [1] Biot M A. The theory of propagation of elastic waves in a fluid-saturated porous solid—Ⅰ: low frequency range; Ⅱ: higher frequency range[J]. Journal of the Acoustical Society of America, 1956, 28(2): 168-191.
    [2] Plona T J. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies[J]. Applied Physics Letters, 1980, 36(4): 259-261.
    [3] Deresiewicz H, Rice J T. The effect of boundaries on wave propagation in a liquid-filled porous solid—Ⅰ: Reflection of plane waves at a true plane boundary[J]. Bulletin of the Seismological Society of America, 1960, 50(4): 599-607.
    [4] Deresiewicz H, Rice J T. The effect of boundaries on wave propagation in a liquid-filled porous solid V. Transmission across a plane interface[J]. Bulletin of the Seismological Society of America, 1964, 54(1): 409-416.
    [5] Stoll R D, Kan T K. Reflection of acoustic wave at a water-sediment interface[J]. Journal of the Acoustical Society of America, 1981, 70(1): 149-156.
    [6] Dutta N C, Ode H. Seismic reflections from a gas water contact[J]. Geophysics, 1983, 48(2): 148-162.
    [7] Wu K Y, Xue Q, Adler L. Reflection and transmission of elastic waves from a fluid-saturated porous solid boundary[J]. Journal of the Acoustical Society of America, 1990, 87(6): 2349-2358.
    [8] Santos J E. Reflection and transmission coefficients in fluid-saturated porous media[J]. Journal of the Acoustical Society of America, 1992, 91(4): 1911-1923.
    [9] Tomar S K, Gogna M L. Reflection and refraction of longitudinal wave at an interface between two micropolar elastic solids in welded contact[J]. Journal of the Acoustical Society of America, 1995, 97(2): 822-830.
    [10] Dai Z J, Kuang Z B, Zhao S X. Reflection and transmission of elastic waves at the interface between an elastic solid and a double porosity medium[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43: 961-971.
    [11] Brutsaert W. The propagation of elastic waves in unconsolidated unsaturated granular mediums[J]. Journal of Geophysical Research, 1964, 69(2): 360-373.
    [12] Berryman J G, Thigpen L, Chin R C Y. Bulk elastic wave propagation in partially saturated porous solids[J]. Journal of the Acoustical Society of America, 1988, 84(1): 360-373.
    [13] Gray W G. Thermodynamics and constitutive theory for multiphase porous-media flow considering internal geometric constraints[J]. Advances in Water Resources, 1999, 22(5): 521-547.
    [14] Muraleetharan K K, Wei C. Dynamic behaviour of unsaturated porous media: governing equations using the theory of mixtures with interfaces (TMI)[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(13): 1579-1608.
    [15] Wei C, Muraleetharan K K. A continuum theory of porous media saturated by multiple immiscible fluids—Ⅰ:linear poroelasticity[J]. International Journal of Engineering Science, 2002, 40(16): 1807-1833.
    [16] Lo W C, Majer E, Sposito G.Wave propagation through elastic porous media containing two immiscible fluids[J]. Water Resources Research, 2005, 41(2): 1-20.
    [17] Lu J F, Hanyga A. Linear dynamic model for porous media saturated by two immiscible fluids[J]. International Journal of Solids and Structures, 2005, 42(9/10): 2689-2709.
    [18] Bowen R M. Compressible porous media models by use of theory of mixtures[J]. International Journal of Engineering Science, 1982, 20(6): 697-735.
    [19] Albers B. Analysis of the propagation of sound waves in partially saturated soils by means of a macroscopic linear poroelastic model[J].Transport in Porous Media, 2009, 80(1): 173-192.
    [20] Chen W Y, Xia T D, Hu W T. A mixture theory analysis for the surface-wave propagation in an unsaturated porous medium[J]. International Journal of Solids and Structures, 2011, 48(16/17): 2402-2412.
    [21] Tomar S K, Arora A. Reflection and transmission of elastic waves at an elastic/porous solid saturated by two immiscible fluids[J]. International Journal of Solids and Structures, 2006, 43(7/8): 1991-2013.
    [22] Arora A, Tomar S K. Elastic waves at porous/porous elastic half-spaces saturated by two immiscible fluids[J]. Journal of Porous Media, 2007, 8(10): 751-768.
    [23] Yeh C L, Lo W C, Jan C D, Yang C C. Reflection and refraction of obliquely incident elastic waves upon the interface between two porous elastic half-spaces saturated by different fluid mixtures[J]. Journal of Hydrology, 2010, 395(1/2): 91-102.
    [24] Johnson D L, Koplik J, Dashen R. Theory of dynamic permeability and tortuosity in fluid-saturated porous-media[J]. Journal of Fluid Mechanics, 1987, 176: 379-402.
    [25] Lo W C, Sposito G, Majer E. Low-frequency dilatational wave propagation through unsaturated porous media containing two immiscible fluids[J]. Transport in Porous Media, 2007, 68(1): 91-105.
    [26] Dullien F A L. Porous Media Fluid Transport and Pore Structure[M]. San Diego: Academic Press, 1992.
    [27] Coussy O. Poromechanics[M]. 2nd ed. Chichester: John Wiley and Sons, 2004.
    [28] van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
  • 加载中
计量
  • 文章访问数:  1267
  • HTML全文浏览量:  29
  • PDF下载量:  878
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-11
  • 修回日期:  2012-04-11
  • 刊出日期:  2012-07-15

目录

    /

    返回文章
    返回