留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

化学反应对高对流Maxwell流体在多孔面上作MHD流动和传质的影响

K·法拉菲路 K·V·普拉撒德 A·苏亚沙 吴朝安

K·法拉菲路, K·V·普拉撒德, A·苏亚沙, 吴朝安. 化学反应对高对流Maxwell流体在多孔面上作MHD流动和传质的影响[J]. 应用数学和力学, 2012, 33(7): 845-855. doi: 10.3879/j.issn.1000-0887.2012.07.005
引用本文: K·法拉菲路, K·V·普拉撒德, A·苏亚沙, 吴朝安. 化学反应对高对流Maxwell流体在多孔面上作MHD流动和传质的影响[J]. 应用数学和力学, 2012, 33(7): 845-855. doi: 10.3879/j.issn.1000-0887.2012.07.005
K.Vajravelu, K.V.Prasad, A.Sujatha, Chiu-on NG. MHD Flow and Mass Transfer of a Chemically Reactive Upper Convected Maxwell (UCM) Fluid Past a Porous Surface[J]. Applied Mathematics and Mechanics, 2012, 33(7): 845-855. doi: 10.3879/j.issn.1000-0887.2012.07.005
Citation: K.Vajravelu, K.V.Prasad, A.Sujatha, Chiu-on NG. MHD Flow and Mass Transfer of a Chemically Reactive Upper Convected Maxwell (UCM) Fluid Past a Porous Surface[J]. Applied Mathematics and Mechanics, 2012, 33(7): 845-855. doi: 10.3879/j.issn.1000-0887.2012.07.005

化学反应对高对流Maxwell流体在多孔面上作MHD流动和传质的影响

doi: 10.3879/j.issn.1000-0887.2012.07.005
基金项目: 中国香港特别行政区研究基金资助项目(HKU 715510E)
详细信息
  • 中图分类号: O34

MHD Flow and Mass Transfer of a Chemically Reactive Upper Convected Maxwell (UCM) Fluid Past a Porous Surface

  • 摘要: 研究导电的高对流Maxwell流体在多孔表面上,作计及物质化学反应时的MHD流动及其传质.将非线性的偏微分控制方程及其相应的边界条件,变换为非线性的常微分方程,并利用Keller-Box法进行数值求解.用图形给出了各种物理参数对流动和传质特性的影响,并对结果进行了讨论.可以看到,化学反应阶次提高了扩散边界层的厚度;还可以看到,传质率强烈地依赖于Schmidt数和反应率参数.此外,在特例情况下得到了以往文献中可供利用的结果.
  • [1] Crane L J. Flow past a stretching plate[J]. ZAMP, 1970, 21(4): 645-647.
    [2] Gupta P S, Gupta A S. Heat and mass transfer on a stretching sheet with suction or blowing[J]. Canad J Chem Eng, 1977, 55(6): 744-746.
    [3] Chakrabarti A, Gupta A S. Hydro-magnetic flow and heat transfer over a stretching sheet[J]. Quart Appl Math, 1979, 37: 73-78.
    [4] Grubka L J, Bobba K M. Heat transfer characteristics of a continuous stretching surface with variable temperature[J]. ASME J Heat Trans, 1985, 107(1): 248-250.
    [5] Chen C H. Laminar mixed convection adjacent to vertical continuously stretching sheets[J]. Heat Mass Transfer, 1998, 33(5/6): 471-476.
    [6] Cortell R. Viscous flow and heat transfer over a nonlinearly stretching sheet[J]. Appl Math Comp, 2007, 184(2): 864-873.
    [7] Ishak A, Jafar K, Nazar R, Pop I. MHD stagnation point towards a stretching sheet[J]. Physica A, Stat Mech Its Appl, 2009, 388(17): 3377-3383.
    [8] Abbasbandy S, Hayat T. Solution of the MHD Falkner-Skan flow by homotopy analysis method[J]. CNSNS, 2009, 14(9/10): 3591-3598.
    [9] Rajagopal K R, Na T Y, Gupta A S. Flow of a visco-elastic fluid over a stretching sheet[J]. Rheol Acta, 1984, 23: 213-215.
    [10] Andersson H I. MHD flow of a visco-elastic fluid past a stretching surface[J]. Acta Mech, 1992, 95(1/4): 227-232.
    [11] Cortell R. A note on flow and heat transfer of a viscoelastic fluid over a stretching sheet[J]. Int J Non-Linear Mechanics, 2006, 41(1): 78-85.
    [12] Subhas Abel M, Mahesha N. Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation[J]. Appl Math Model, 2008, 32(10): 1965-1983.
    [13] Bhatnagar R K, Gupta G, Rajagopal K R. Flow of an Oldroyd-B fluid due to a stretching sheet in the presence of a free stream velocity[J]. Int J Non-Linear Mech, 1995, 30(3): 391-405.
    [14] Renardy M. High Weissenberg number boundary layers for upper convected Maxwell fluid[J]. J Non-Newtonian Fluid Mech, 1997, 68(1): 125-132.
    [15] Sadeghy K, Najafi A H, Saffaripour M. Sakiadis flow of an upper-convected Maxwell fluid[J]. Int J Nonlinear Mech, 2005, 40(9): 1220-1228.
    [16] Hayat T, Abbas Z, Sajid M. Series solution for the upper-convected Maxwell fluid over a porous stretching plate[J]. Phys Lett A, 2006, 358(5/6): 396-403.
    [17] Aliakbar V, Alizadeh-Pahlavan A, Sadeghy K. The influence of thermal radiation on MHD flow of Maxwellian fluids above stretching sheets[J]. CNSNS, 2009, 14(3): 779-794.
    [18] Hayat T, Abbas Z, Ali N. MHD flow and mass transfer of an upper-convected Maxwell fluid past a porous shrinking sheet with chemical reaction species[J]. Phys Lett A, 2008, 372(26): 4698-4604.
    [19] Chambre P L, Young J D. On the diffusion of a chemically reactive species in a laminar boundary layer flow[J]. Phys Fluids, 1958, 1: 48-54.
    [20] Anjali Devi S P, Kandaswamy R. Effects of chemical reaction heat and mass transfer on MHD flow past a semi infinite plate[J]. ZAMM, 2000, 80(10): 697-701.
    [21] Takhar H S, Chamkha A J, Nath G. Flow and mass transfer on a stretching sheet with a magnetic field and chemically reactive species[J]. Int J Eng Sci, 2000, 38(12): 1303-1314.
    [22] Akyildiz F T, Bellout H, Vajravelu K. Diffusion of chemically reactive species in a porous medium over a stretching sheet[J]. J Math Anal Appl, 2006, 320(1): 322-339.
    [23] Cortell R. Toward an understanding of the motion and mass transfer with chemically reactive species for two classes of viscoelastic fluid over a porous stretching sheet[J]. Chem Eng Proc, 2007, 46(10): 982-989.
    [24] Gupta A S, Wineman A S. On the boundary layer theory for non-Newtonian fluids[J]. Lett Appl Eng Sci, 1980, 18(6): 875-883.
    [25] Bird R B, Armstrong R C, Hassager O. Dynamics of Polymeric Liquids[M]. New York: John Wiley and Sons, 1987.
    [26] Andersson H I, Hansen O R, Holmedal B. Diffusion of a chemically reactive species from a stretching sheet[J]. Int J Heat Mass Trans, 1994, 37(4): 659-664.
    [27] Cebeci T, Bradshaw P. Physical and Computational Aspects of Convective Heat Transfer[M]. New York: Springer-Verlag, 1984.
    [28] Keller H B. Numerical Methods for Two-Point Boundary Value Problems[M]. New York: Dover Publ, 1992.
    [29] Andersson H I, Bech K H, Dandapat B S. Magnetohydrodynamic flow of a power law fluid over a stretching sheet[J]. Int J Non-Linear Mech, 1992, 27(6): 929-936.
  • 加载中
计量
  • 文章访问数:  1070
  • HTML全文浏览量:  54
  • PDF下载量:  812
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-18
  • 修回日期:  2012-01-23
  • 刊出日期:  2012-07-15

目录

    /

    返回文章
    返回