留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米流体在非线性伸展面上粘性流动及其热交换时的相似解

M·A·A·哈玛德 M·费尔道斯

M·A·A·哈玛德, M·费尔道斯. 纳米流体在非线性伸展面上粘性流动及其热交换时的相似解[J]. 应用数学和力学, 2012, 33(7): 868-876. doi: 10.3879/j.issn.1000-0887.2012.07.007
引用本文: M·A·A·哈玛德, M·费尔道斯. 纳米流体在非线性伸展面上粘性流动及其热交换时的相似解[J]. 应用数学和力学, 2012, 33(7): 868-876. doi: 10.3879/j.issn.1000-0887.2012.07.007
M.A.A.Hamad, M.Ferdows. On Similarity Solutions to the Viscous Flow and Heat Transfer of Nanofluid Over Nonlinearly Stretching Sheet[J]. Applied Mathematics and Mechanics, 2012, 33(7): 868-876. doi: 10.3879/j.issn.1000-0887.2012.07.007
Citation: M.A.A.Hamad, M.Ferdows. On Similarity Solutions to the Viscous Flow and Heat Transfer of Nanofluid Over Nonlinearly Stretching Sheet[J]. Applied Mathematics and Mechanics, 2012, 33(7): 868-876. doi: 10.3879/j.issn.1000-0887.2012.07.007

纳米流体在非线性伸展面上粘性流动及其热交换时的相似解

doi: 10.3879/j.issn.1000-0887.2012.07.007
详细信息
  • 中图分类号: O361.3; O357.3; O357.4

On Similarity Solutions to the Viscous Flow and Heat Transfer of Nanofluid Over Nonlinearly Stretching Sheet

  • 摘要: 当含金属颗粒的粘性流体(即纳米流体)流过非线性伸展平面时,分析其边界层流动及其热交换.假设伸展速度是到原点距离的幂函数.将偏微分的控制方程及其相应的边界条件,简化为耦合的非线性常微分方程及其相应的边界条件.数值地求解所得到的非线性常微分方程.讨论了各相关参数(即Eckert数Ec, 纳米颗粒的固体体积率和非线性伸展参数n)对问题结果的影响,并与先前文献所报道的结果进行了对比.研究了不同类型的纳米颗粒.发现纳米流体的流动特性随着纳米颗粒类型的改变而变化.
  • [1] Eastman J A, Choi S U S, Li S, Yu W, Thompson L J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles[J]. Appl Phys Lett, 2001, 78(6): 718-720.
    [2] Lee S, Choi S U-S, Li S, Eastman J A. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. J Heat Transf, 1999, 121(2): 280-289.
    [3] Choi S U S, Zhang Z G, Yu W, Lockwood F E, Grulke E A. Anomalous thermal conductivity enhancement in nanotube suspensions[J]. Appl Phys Lett, 2001, 79(14): 2252-2254.
    [4] Xuan Y, Li Q. Heat transfer enhancement of nanofluids[J]. Int J Heat Mass Transf, 2000, 21(1): 58-64.
    [5] Batchelor G K. Sedimentation in a dilute dispersion of spheres[J]. J Fluid Mech, 1972, 52(2): 45-268.
    [6] Batchelor G K, Green J T. The hydrodynamic interaction of two small freely-moving[J]. J Fluid Mech, 1972, 56(2): 375-400.
    [7] Bonnecaze R T, Brady J F. A method for determining the effective conductivity of dispersions of particles[J]. Proc R Soc Lond A, 1990, 430(1879): 285-313.
    [8] Bonnecaze R T, Brady J F. The effective conductivity of random suspensions of spherical particles[J]. Proc R Soc Lond A, 1991, 432(1886): 445-465.
    [9] Davis R H. The effective thermal conductivity of a composite material with spherical inclusions[J]. Int J Thermophys, 1986, 7(3): 609-620.
    [10] Hamilton R L, Crosser O K. Thermal conductivity of heterogeneous two-component systems[J]. Ind Eng Chem Fundam, 1962, 1(3): 187-191.
    [11] Jeffrey D J. Conduction through a random suspension of spheres[J]. Proc R Soc Lond A, 1973, 335(1602): 355-367.
    [12] Lu S, Lin H. Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity[J]. J Appl Phys, 1996, 79(9): 6761-6769.
    [13] Maxwell J C. A Treatise on Electricity and Magnetism[M]. 3rd ed. 1954 reprint. Dover, NY: Clarendon Press, 1891: 435-441.
    [14] Congedo P M, Collura S, Congedo P M. Modeling and analysis of natural convection heat transfer in nanofluids[C]Proceedings of ASME Summer Heat Transfer Conference. USA: Florida, 2009, 3: 569-579.
    [15] Ghasemi B, Aminossadati S M. Natural convection heat transfer in an inclined enclosure filled with a water-CuO nanofluid[J]. Numerical Heat Transfer, Part A: Applications, 2009, 55(8): 807-823.
    [16] Ho C J, Chen M W, Li Z W. Numerical simulation of natural convection of nanofluid in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity[J]. International Journal of Heat Mass Transfer, 2008, 51(17/18): 4506-4516.
    [17] Ho C J, Chen M W, Li Z W. Effect on natural convection heat transfer of nanofluid in an enclosure due to uncertainties of viscosity and thermal conductivity[C]Proceedings of ASME/JSME Thermal Engineering Summer Heat Transfer Conference.Canada: British Columbia, 2007, 1: 833-841.
    [18] Hamad M A A, Pop I, Ismail A I. Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate[J]. Nonlinear Analysis: Real World Appl, 2011, 12(3): 1338-1346.
    [19] Hamad M A A, Pop I. Unsteady MHD free convection flow past a vertical permeable flat plate in a rotating frame of reference with constant heat source in a nanofluid[J]. Heat Mass Transfer, 2011, 47(12): 1517-1524.
    [20] Hamad M A A. Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field[J]. Int Comm Heat Mass Transfer, 2011, 38(4): 487-492.
    [21] Hamad M A A, Ferdows M. Similarity solution of boundary layer stagnation-point flow towards a heated porous stretching sheet saturated with a nanofluid with heat absorption/generation and suction/blowing: a lie group analysis[J]. Commun Nonlinear Sci Numer Simulat, 2012, 17(1): 132-140.
    [22] Das S K, Choi S U S, Yu W, Pradeep T. Nanofluids: Science and Technology[M]. New Jersey: Wiley, 2007.
    [23] Trisaksri V, Wongwises S. Critical review of heat transfer characteristics nanofluids[J]. Renew Sustain Energy Rev, 2007, 11(3): 512-523.
    [24] Wang X-Q, Mujumdar A S. Heat transfer characteristics of nanofluids: a review[J]. Int J Therm Sci, 2007, 46(1): 1-19.
    [25] Kakac S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids[J]. Int J Heat Mass Transf, 2009, 52(13/14): 3187-3196.
    [26] Gupta P S, Gupta A S. Heat and mass transfer on a stretching sheet with suction or blowing[J]. Canadian Journal of Chemical Engineering, 1977, 55(6): 744-746.
    [27] Vajravelu K. Viscous flow over a nonlinearly stretching sheet[J]. Applied Mathematics and Computation, 2001, 124(3): 281-288.
    [28] Raptis A, Perdikis C. Viscous flow over a non-linearly stretching sheet in the presence of a chemical reaction and magnetic field[J]. International Journal of Non-Linear Mechanics, 2006, 41(4): 527-529.
    [29] Bataller R C. Similarity solutions for flow and heat transfer of a quiescent fluid over a nonlinearly stretching surface[J].Journal of Materials Processing Technology, 2008, 203(1/3): 176-183.
    [30] Prasad K V, Vajravelu K. Heat transfer in the MHD flow of a power law fluid over a non-isothermal stretching sheet[J]. International Journal of Heat and Mass Transfer, 2009, 52(21/22): 4956-4965.
    [31] Ziabakhsh Z, Domairry G, Bararnia H, Babazadeh H. Analytical solution of flow and diffusion of chemically reactive species over a nonlinearly stretching sheet immersed in a porous medium[J]. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41(1): 22-28.
    [32] Akyildiz F T, Siginer D A. Galerkin-Legendre spectral method for the velocity and thermal boundary layers over a non-linearly stretching sheet[J]. Nonlinear Analysis: Real World Applications, 2010, 11(2): 735-741.
    [33] Prasad K V, Vajravelu K, Datti P S. Mixed convection heat transfer over a non-linear stretching surface with variable fluid properties[J]. International Journal of Non-Linear Mechanics, 2010, 45(3): 320-330.
    [34] Afzal N. Momentum and thermal boundary layers over a two-dimensional or axisymmetric non-linear stretching surface in a stationary fluid[J]. International Journal of Heat and Mass Transfer, 2010, 53(1/3): 540-547.
    [35] Cortell R. Viscous flow and heat transfer over a nonlinearly stretching sheet[J]. Applied Mathematical and Computation, 2007, 184(2): 864-873.
    [36] Oztop H F, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids[J]. Int J Heat Fluid Flow, 2008, 29(5): 1326-1336.
    [37] Aminossadati S M, Ghasemi B. Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure[J]. European Journal of Mechanics B/Fluids, 2009, 28(5): 630-640.
  • 加载中
计量
  • 文章访问数:  1511
  • HTML全文浏览量:  18
  • PDF下载量:  865
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-06
  • 修回日期:  2011-12-28
  • 刊出日期:  2012-07-15

目录

    /

    返回文章
    返回