## 留言板

 引用本文: 郑芳英, 张连生. 关于约束极小化问题的一个新的简单精确罚函数[J]. 应用数学和力学, 2012, 33(7): 896-906.
ZHENG Fang-ying, ZHANG Lian-sheng. A New Simple Exact Penalty Function for Constrained Minimization[J]. Applied Mathematics and Mechanics, 2012, 33(7): 896-906. doi: 10.3879/j.issn.1000-0887.2012.07.009
 Citation: ZHENG Fang-ying, ZHANG Lian-sheng. A New Simple Exact Penalty Function for Constrained Minimization[J]. Applied Mathematics and Mechanics, 2012, 33(7): 896-906.

## 关于约束极小化问题的一个新的简单精确罚函数

##### doi: 10.3879/j.issn.1000-0887.2012.07.009

###### 通讯作者: 郑芳英(1979—),女,浙江衢州人,博士生(联系人.E-mail:fangyingzh@163.com;fangyingzh@shu.edu.cn);张连生(1937—),男,浙江舟山人,教授,博士生导师(E-mail:zhangls@staff.shu.edu.cn).
• 中图分类号: O221.2

## A New Simple Exact Penalty Function for Constrained Minimization

• 摘要: 针对等式及不等式约束极小化问题，通过对原问题添加一个变量，给出一个新的简单精确罚函数，即在该精确罚函数表达式中，不含有目标函数及约束函数的梯度．在满足某些约束品性的条件下，可以证明：当罚参数充分大时，所给出的罚问题的局部极小点是原问题的局部极小点．
•  [1] Di Pillo G. Exact Penalty Methods[M]. Netherlands: Kluwer Academic Publisher, 1994: 209-253. [2] Di Pillo G, Grippo L. Exact penalty functions in constrained optimization[J]. SIAM Journal on Control and Optimization,1989, 27(6): 1333-1360. [3] Di Pillo G, Grippo L. An exact penalty function method with global convergence properties for nonlinear programming problems[J]. Mathematical Programming, 1986, 36(1): 1-18. [4] Di Pillo G, Lucidi S. An augmented lagrangian function with improved exactness properties[J]. SIAM Journal on Optimization, 2002, 12(2): 376-406. [5] Fletcher R. An exact penalty function for nonlinear programming with inequalities[J]. Mathematical Programming, 1973, 5(1): 129-150. [6] Fletcher R. Practical Methods of Optimization(2):Constrained Optimization[M]. Wiley: John Wiley & Sons, 1981. [7] Han S P, Magasarian O L. Exact penalty functions in nonlinear programming[J]. Mathematical Programming, 1979, 17(1): 251-269. [8] Bazaraa M, Goode J. Sufficient conditions for a globally exact penalty function without convexity[J].Mathematical Programming Studies, 1982, 18(1): 1-15. [9] Bertsekas D P. Necessary and sufficient conditions for a penalty method to be exact[J]. Mathematical Programming, 1975, 9(1):87-99. [10] Coleman T, Conn A. Nonlinear programming via an exact penalty method: asymptotic analysis[J]. Mathematical Programming, 1982, 24(1): 123-136. [11] Evans J P, Gould F J, Tolle J W.Exact penalty functions in nonlinear programming[J]. Mathematical Programming, 1973, 4(1): 72-97. [12] Fiacco A V, McCormick P. Nonlinear Programming: Sequential Unconstrained Minimization Techniques[M]. Wiley: John Wiley & Sons, 1968. [13] Nocedal J, Wright S J. Numerical Optimization[M]. New York: Springer, 1999. [14] Huyer W, Neumaier A. A new exact penalty function[J].SIAM Journal on Optimization, 2003, 3(4): 1141-1158. [15] 刘丙状. 约束最优化问题中的光滑精确罚函数[D]. 博士论文. 上海: 上海大学, 2008.(LIU Bing-zhuang. Smooth exact penalty functions for constrained optimization[D]. Ph.D.Thesis. Shanghai: Shanghai University, 2008. (in Chinese)) [16] Hock W, Schittkowski K. Test Examples for Nonlinear Programming Codes[C]Lecture Notes in Economics and Mathematical Systems. New York: Springer-Verlag, Berlin Heidelberg, 1981. [17] Lasserre J B. A globally convergent algorithm for exact penalty functions[J]. European Journal of Operational Research, 1981, 7(4): 389-395.

##### 计量
• 文章访问数:  1271
• HTML全文浏览量:  36
• PDF下载量:  844
• 被引次数: 0
##### 出版历程
• 收稿日期:  2011-04-18
• 修回日期:  2012-03-22
• 刊出日期:  2012-07-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈