留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微极性流体在上下正交移动的渗透平行圆盘间的流动

司新辉 郑连存 张欣欣 司新毅

司新辉, 郑连存, 张欣欣, 司新毅. 微极性流体在上下正交移动的渗透平行圆盘间的流动[J]. 应用数学和力学, 2012, 33(8): 907-918. doi: 10.3879/j.issn.1000-0887.2012.08.001
引用本文: 司新辉, 郑连存, 张欣欣, 司新毅. 微极性流体在上下正交移动的渗透平行圆盘间的流动[J]. 应用数学和力学, 2012, 33(8): 907-918. doi: 10.3879/j.issn.1000-0887.2012.08.001
SI Xin-hui, ZHENG Lian-cun, ZHANG Xin-xin, SI Xin-yi. Flow of a Micropolar Fluid Between Two Orthogonally Moving Porous Disks[J]. Applied Mathematics and Mechanics, 2012, 33(8): 907-918. doi: 10.3879/j.issn.1000-0887.2012.08.001
Citation: SI Xin-hui, ZHENG Lian-cun, ZHANG Xin-xin, SI Xin-yi. Flow of a Micropolar Fluid Between Two Orthogonally Moving Porous Disks[J]. Applied Mathematics and Mechanics, 2012, 33(8): 907-918. doi: 10.3879/j.issn.1000-0887.2012.08.001

微极性流体在上下正交移动的渗透平行圆盘间的流动

doi: 10.3879/j.issn.1000-0887.2012.08.001
基金项目: 国家自然科学基金资助项目(50936003;50905013;51004013;51174028);中央高校基础研究基金资助项目(FRF-TP-12-108A)
详细信息
    通讯作者:

    司新辉(1978—),男,山东人,博士(联系人.Tel:+86-10-62332589; E-mail:sixinhui-ustb@126.com).

  • 中图分类号: O175.8; O357.3

Flow of a Micropolar Fluid Between Two Orthogonally Moving Porous Disks

  • 摘要: 分析了上下正交运动的两平行圆盘间的非稳态的不可压缩的二维微极性流体的流动.应用von Krmn类型的一个相似变换,偏微分方程组(PDEs)被转化成一组耦合的非线性常微分方程(ODEs).应用同伦分析方法,得到方程的解析解,并且详细讨论了不同的物理参数,像膨胀率,渗透Reynolds数等,对流体的速度场的影响.
  • [1] O’Connor J J, Boyd J, Avallone E A. Standard Handbook of Lubrication Engineering[M]. New York: McGraw-Hill,1968.
    [2] Elcrat A R. On the radial flow of a viscous fluid between porous disks[J]. Archive for Rational Mechanica and Analysis, 1976, 61(1): 91-96.
    [3] Rasmussen H. Steady viscous flow between two porous disks[J]. Zeitschrif für Angewandte Mathematik und Physik, 1970, 21(2): 187-195.
    [4] Berman A S. Laminar flow in channels with porous walls[J]. Journal of Applied Physics, 1953, 24(9): 1232-1235.
    [5] Eringen A C. Theory of thermomicrofluids[J]. Journal of Mathematical Analysis and Applications, 1972, 38(2): 480-496.
    [6] Aero E L, Bulygin A N, Kuvshinskii E V. Asymmetric hydromechanics[J]. Journal of Applied Mathematics and Mechanics, 1965, 29(2): 297-308.(in Russian)
    [7] Kamal M A, Ashraf M, Syed K S. Numerical solution of steady viscous flow of a micropolar fluid driven by injection between two porous disks[J].Applied Mathematics and Computation, 2006, 179(1): 1-10.
    [8] Ashraf M, Kamal M A, Syed K S. Numerical simulation of flow of a micropolar fluid between a porous disk and a non-porous disk[J]. Applied Mathematical Modelling, 2009, 33(4): 1933-1943.
    [9] Ariman T, Turk M A, Sylvester N D. Microcontinuum fluid mechanics-a review[J]. International Journal of Engineering Science, 1973, 11(8): 905-930.
    [10] Ariman T, Turk M A, Sylvester N D. Application of Microcontinuum fluid mechanics-a review[J]. International Journal of Engineering Science, 1974, 12(4): 273-293.
    [11] Eringen A C. Microcontinuum Field Theories-Ⅱ:Fluent Media[M]. New York: Springer, 2001.
    [12] Guram G S, Anwar M. Steady flow of a micropolar fluid due to a rotating disk[J]. Journal of Engineering Mathematics, 1979, 13(3): 223-234.
    [13] Guram G S, Anwar M. Micropolar flow due to a rotating disc with suction and injection[J]. ZAMM, 1981, 61(11): 589-605.
    [14] Nazir A, Mahmood T.Analysis of flow and heat transfer of viscous fluid between contracting rotating disks[J]. Applied Mathematical Modelling, 2011, 35(7): 3154-3165.
    [15] Uchida S, Aoki H. Unsteady flows in a semi-infinite contracting or expanding pipe[J]. Journal of Fluid Mechanics, 1977, 82(2): 371-387.
    [16] Ohki M. Unsteady flows in a porous, elastic, circular tube-1 the wall contracting or expanding in an axial direction[J].Bulletin of the JSME, 1980, 23(179): 679-686.
    [17] Barron J, Majdalani J, van Moorhem W K. A novel investigation of the oscillatory field over a transpiring surface[J]. Journal of Sound and Vibration, 2000, 235(2): 281-297.
    [18] Majdalani J, Zhou C, Dawson C A. Two-dimensional viscous flows between slowly expanding or contracting walls with weak permeability[J]. Journal of Biomechanics, 2002, 35(10): 1399-1403.
    [19] Majdalani J, Zhou C. Moderate-to-large injection and suction driven channel flows with expanding or contracting walls[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 2003, 83(3): 181-196.
    [20] Dauenhauer C E, Majdalani J. Exact self-similarity solution of the Navier-stokes equations for a porous channel with orthogonally moving walls[J]. Physics of Fluids, 2003, 15(6): 1485-1495.
    [21] Asghar S, Mushtaq M, Hayat T. Flow in a slowly deforming channel with weak permeability: an analytical approach[J]. Nonlinear Analysis: Real World Applications, 2010, 11(1): 555-561.
    [22] Dinarvand S, Rashidi M M. A reliable treatment of a homotopy analysis method for two-dimensional viscous flow in a rectangular domain bounded by two moving porous walls[J]. Nonlinear Analysis: Real World Applications, 2010, 11(3): 1502-1512.
    [23] Si X H, Zheng L C, Zhang X X, Chao Y. The flow of a micropolar fluid through a porous channel with expanding or contracting walls[J]. Center Europe Journal of Physics, 2011, 9(3): 825-834.
    [24] Si X H, Zheng L C, Zhang X X, Si X Y, Yang J H. Flow of a viscoelastic through a porous channel with expanding or contracting walls[J]. Chinese Physics Letters, 2011, 28(4): 044702.
    [25] Xu H, Lin Z L, Liao S J, Wu J Z, Majdalani J. Homotopy based solutions of the Navier-Stokes equations for a porous channel with orthogonlly moving walls[J].Physics of Fluids, 2010, 22(5): 053601.
    [26] Liao S J. Beyond Perturbation:Introduction to Homotopy Analysis Method[M]. Boca, Raton: Chapman Hall/CRC Press, 2003.
    [27] Liao S J. On the homotopy analysis method for nonlinear problems[J]. Applied Mathematics and Computation, 2004, 147(2): 499-513.
    [28] Hayat T, Khan M. Homotopy solution for a generalized second grade fluid past a porous plate[J]. Non-Linear Dynamics, 2005, 42(2): 395-405.
    [29] Hayat T, Khan M, Asghar S. Magnetohydrodynamic flow of an oldroyd 6-constant fluid[J]. Applied Mathematics and Computation, 2004, 155(2): 417-425.
    [30] Abbas Z, Sajid M, Hayat T. MHD boundary-layer flow of an upper-convected Maxwell fluid in a porous channel[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(2): 229-238.
    [31] Sajid M, Hayat T, Asghar S. On the analytic solution of the steady flow of a fourth grade fluid[J]. Physics Letters A, 2006, 355(1): 18-26.
    [32] Abbasbandy S, Shivanian E, Vajravelu K. Mathematical properties of h-curve in the frame work of the homotopy analysis method[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(11): 4268-4275.
    [33] Abbasbandy S. Approximate analytical solutions to thermo-poroelastic equations by means of the iterated homotopy analysis method[J]. International Journal of Computer Mathematics, 2011, 88(8): 1763-1775.
    [34] Abbasbandy S, Magyari E, Shivanian E. The homotopy analysis method for multiple solutions of nonlinear boundary value problems[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(9/10): 3530-3536.
    [35] Rees D A S, Pop I. Free convection boundary-layer flow of a micropolar fluid from a vertical flat plate[J]. Journal of Applied Mathematics, 1988, 61(2): 179-197.
    [36] Guram G S, Smith A C. Stagnation flows of micropolar fluids with strong and weak interactions[J]. Computers & Mathematics With Applications, 1980, 6(2): 213-233.
    [37] von Krmn T. be Laminare und turbulente Reibung[J]. Zeitschrif für Angewandte Mathematik und Mechanik, 1921, 1: 233-252.
    [38] Liao S J. An optimal homotopy-analysis approach for strongly nonlinear differential equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(8): 2003-2016.
  • 加载中
计量
  • 文章访问数:  1425
  • HTML全文浏览量:  72
  • PDF下载量:  807
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-21
  • 修回日期:  2012-03-26
  • 刊出日期:  2012-08-15

目录

    /

    返回文章
    返回