留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用逐次Taylor级数线性化法在多孔伸展界面上求解高对流Maxwell流体的磁流体动力学流动

S·S·莫查 T·哈亚特 O·M·阿多塞瑞

S·S·莫查, T·哈亚特, O·M·阿多塞瑞. 应用逐次Taylor级数线性化法在多孔伸展界面上求解高对流Maxwell流体的磁流体动力学流动[J]. 应用数学和力学, 2012, 33(8): 919-932. doi: 10.3879/j.issn.1000-0887.2012.08.002
引用本文: S·S·莫查, T·哈亚特, O·M·阿多塞瑞. 应用逐次Taylor级数线性化法在多孔伸展界面上求解高对流Maxwell流体的磁流体动力学流动[J]. 应用数学和力学, 2012, 33(8): 919-932. doi: 10.3879/j.issn.1000-0887.2012.08.002
S.S.Motsa, T.Hayat, O.M.Aldossary. MHD Flow of UCM Fluid Above Porous Stretching Sheet Using the Successive Taylor Series Linearisation Method[J]. Applied Mathematics and Mechanics, 2012, 33(8): 919-932. doi: 10.3879/j.issn.1000-0887.2012.08.002
Citation: S.S.Motsa, T.Hayat, O.M.Aldossary. MHD Flow of UCM Fluid Above Porous Stretching Sheet Using the Successive Taylor Series Linearisation Method[J]. Applied Mathematics and Mechanics, 2012, 33(8): 919-932. doi: 10.3879/j.issn.1000-0887.2012.08.002

应用逐次Taylor级数线性化法在多孔伸展界面上求解高对流Maxwell流体的磁流体动力学流动

doi: 10.3879/j.issn.1000-0887.2012.08.002
详细信息
  • 中图分类号: O357.4;O361.3

MHD Flow of UCM Fluid Above Porous Stretching Sheet Using the Successive Taylor Series Linearisation Method

  • 摘要: 研究不可压缩的高对流Maxwell(UCM)流体,在多孔伸展界面上作磁流体动力学(MHD)的边界层流动.利用相似变换将控制的偏微分方程,变换为非线性常微分方程.采用逐次Taylor级数线性化方法(STLM)求解该非线性问题.对所显现的参数完成速度分量的计算,介绍了表面摩擦因数的数值结果,并分析了问题所显现参数的变化.
  • [1] Lazurkin J S. Cold-drawing of glass-like and crystalline polymers[J]. Journal of Polymer Science, 1958, 30(121): 595-604.
    [2] Ginzburg B M. On the “cold drawing” of semicrystalline polymers[J]. Journal of Macromolecular Science, Part B, 2005, 44(2): 217-223.
    [3] Casas F, Alba-Simionesco C, Lequeux F, Montes H. Cold drawing of ploymers: plasticity and aging[J]. Journal of Non-Crystal Solids, 2006, 352(42/49): 5076-5080.
    [4] Crane L J. Flow past a stretching plate[J]. Zeitschrift für Angewandte Mathematik und Physik(ZAMP), 1970, 21(4): 645-647.
    [5] Wang C Y. Fluid flow due to stretching cylinder[J]. Physics of Fluids, 1988, 31(3): 466-468.
    [6] Wang C Y. Stretching a surface in a rotating fluid[J]. Zeitschrift für Angewandte Mathematik und Physik(ZAMP), 1988, 39(2): 177-185.
    [7] Gupta P S, Gupta A S. Heat and mass transfer on a stretching sheet with suction or blowing[J]. Canadian Journal of Chemical Engineering, 1977, 55(6): 744-746.
    [8] Dandapat B S, Kitamura A, Santra B. Transient film profile of thin liquid film flow on a stretching surface[J]. Zeitschrift für Angewandte Mathematik und Physik(ZAMP), 2006, 57(4): 623-635.
    [9] Santra B, Dandapat B S. Thin film flow over nonlinear stretching sheet[J]. Zeitschrift für Angewandte Mathematik und Physik(ZAMP), 2009, 60(4): 688-700.
    [10] Chiam T C. Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet[J]. Acta Mechanica, 1998, 129(1/2): 63-72.
    [11] Liao S J. A new branch of solutions of boundary layer flows over an impermeable stretched plate[J]. International Journal of Heat and Mass Transfer, 2006, 48(12): 2529-2539.
    [12] Mukhopadhyay S. Effect of thermal radiation on unsteady mixed convection flow and heat transfer over a porous stretching surface in porous medium[J]. International Journal of Heat and Mass Transfer, 2009, 52(13/14): 3261-3265.
    [13] Parsad K V, Pal D, Datti P S. MHD power-law fluid flow and heat transfer over a non-isothermal stretching sheet[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5): 2178-2189.
    [14] Fang T, Zhong Y. Viscous flow over a stretching sheet with an arbitrary surface velocity[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15: 3768-3776.
    [15] Ishak A, Nazar R, Pop I. Mixed convection stagnation point flow of a micropolar fluid towards a stretching sheet[J]. Meccanica, 2008, 43(4): 411-418.
    [16] Ishak A. Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect[J]. Meccanica, 2010, 45(3): 367-373.
    [17] Abel M S, Siddheshwar P G, Mahesha N. Numerical solution of the momentum and heat transfer equations for a hydromagnetic flow due to a stretching sheet of a non-uniform property micropolar liquid[J]. Applied Mathematics and Computation, 2011, 217(12): 5895-5909.
    [18] Pahlavan A A, Aliakbar V. Farahani F V, Sadeghy K. MHD flow of UCM fluids above stretching sheet using two-auxiliary-parameter homotopy analysis method[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(2): 473-488.
    [19] Pahlavan A A, Aliakbar V, Sadeghy K. The influence of thermal radiation on MHD flow of Maxwellian fluids above stretching sheet[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(3): 779-794.
    [20] Hayat T, Abbas Z, Sajid M. MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface[J]. Chaos Solitons and Fractals, 2009, 39(2): 840-848.
    [21] Alizadeh-Pahlavan A, Aliakbar V, Vakili-Farahani F, Sadeghy K. MHD flows of UCM fluids above porous stretching sheets using two-auxiliary-parameter homotopy analysis method[J]. Communications in Nonlinear Science and Numerical Simulations, 2009, 14(2): 473-488.
    [22] Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods in Fluid Dynamics[M]. Berlin: Springer-Verlag, 1988.
    [23] Makukula Z G, Sibanda P, Motsa S S. A novel numerical technique for two-dimensional laminar flow between two moving porous walls[J]. Mathematical Problems in Engineering, 2010, 2010. Article ID 528956, 15 pages; doi: 10.1155/2010/528956.
    [24] Makukula Z G, Sibanda P, Motsa S S. A note on the solution of the von Karman equations using series and Chebyshev spectral methods[J]. Boundary Value Problems, 2010, 2010. Article ID 471793, 17 pages; doi: 10.1155/2010/471793.
    [25] Makukula Z G, Sibanda P, Motsa S S. On new solutions for heat transfer in a visco-elastic fluid between parallel plates[J]. International Journal of Mathematical Models and Methods in Applied Sciences, 2010, 4(4): 221-230.
    [26] Makukula Z, Motsa S S, Sibanda P. On a new solution for the viscoelastic squeezing flow between two parallel plates[J]. Journal of Advanced Research in Applied Mathematics, 2010, 2(4): 31-38.
    [27] Motsa S S, Shateyi S. A new approach for the solution of three-dimensional magnetohydrodynamic rotating flow over a shrinking sheet[J]. Mathematical Problems in Engineering, 2010, 2010. Article ID 586340, 15 pages; doi: 10.1155/2010/586340.
    [28] Shateyi S, Motsa S S. Variable viscosity on magnetohydrodynamic fluid flow and heat transfer over an unsteady stretching surface with Hall effect[J]. Boundary Value Problems, 2010, 2010. Article ID 257568, 20 pages; doi: 10.1155/2010/257568.
    [29] Trefethen L N. Spectral Methods in MATLAB[M]. Philadelphia: SIAM, 2000: 51-75.
  • 加载中
计量
  • 文章访问数:  1638
  • HTML全文浏览量:  29
  • PDF下载量:  808
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-10
  • 修回日期:  2012-03-20
  • 刊出日期:  2012-08-15

目录

    /

    返回文章
    返回