留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同位网格界面速度插值方法研究

李旺 宇波 王欣然 孙树瑜

李旺, 宇波, 王欣然, 孙树瑜. 同位网格界面速度插值方法研究[J]. 应用数学和力学, 2012, 33(8): 933-942. doi: 10.3879/j.issn.1000-0887.2012.08.003
引用本文: 李旺, 宇波, 王欣然, 孙树瑜. 同位网格界面速度插值方法研究[J]. 应用数学和力学, 2012, 33(8): 933-942. doi: 10.3879/j.issn.1000-0887.2012.08.003
LI Wang, YU Bo, WANG Xin-ran, SUN Shu-yu. Technique to Calculate Cell Face Velocity of a Non-Staggered Grid System[J]. Applied Mathematics and Mechanics, 2012, 33(8): 933-942. doi: 10.3879/j.issn.1000-0887.2012.08.003
Citation: LI Wang, YU Bo, WANG Xin-ran, SUN Shu-yu. Technique to Calculate Cell Face Velocity of a Non-Staggered Grid System[J]. Applied Mathematics and Mechanics, 2012, 33(8): 933-942. doi: 10.3879/j.issn.1000-0887.2012.08.003

同位网格界面速度插值方法研究

doi: 10.3879/j.issn.1000-0887.2012.08.003
基金项目: 国家自然科学基金资助项目(51176204; 51134006);国家重点基础研究和发展资助项目(2011CB610306)
详细信息
    通讯作者:

    李旺(1986—),男,黑龙江人,博士生(E-mail: lw286964103@yahoo.com.cn);宇波(联系人.Tel:+86-10-89733849; E-mail: yubobox@cup.edu.cn).

  • 中图分类号: O302;O357.1

Technique to Calculate Cell Face Velocity of a Non-Staggered Grid System

Funds: 国家自然科学基金资助项目(51176204;51134006);国家重点基础研究和发展资助项目(2011CB610306)
  • 摘要: 讨论了同位网格下,离散的连续性方程、动量方程及标量方程中控制容积界面上速度的计算方法.分别采用动量插值技术和线性插值技术计算了动量方程和标量方程的离散系数中的界面速度,并将两种方法得到的计算结果进行了比较.指出当采用线性插值技术去计算离散方程系数中的界面速度时,离散系数中的质量残余必须等于0,这样才能保证数值解的准确性和计算的收敛速度.
  • [1] Rhie C M, Chow W L. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation[J]. AIAA Journal, 1983, 21(11): 1525-1552.
    [2] Peric M. A finite volume method for the prediction of three-dimensional fluid flow in complex ducts[D]. PhD Thesis. UK: University of London, 1985.
    [3] Majumdar S. Development of a finite-volume procedure for prediction of fluid flow problems with complex irregular boundaries
    [4] [R]. Rep 210/T/29, SFB210. Germany: University of Karlsruhe, 1986.
    [5] Peric M, Kessler R, Scheuerer G. Comparison of finite-volume numerical methods with staggered and collocated grids[J]. Computers and Fluids, 1988, 16(4): 389-403.
    [6] Majumdar S. Role of under-relaxation in momentum interpolation for calculation of flow with non-staggered grids[J]. Numerical Heat Transfer, Part B, 1988, 13(1): 125-132.
    [7] Rahman M M, Miettinen A, Siikonen T. Modified simple formulation on a collocated grid with an assessment of the simplified QUICK scheme[J]. Numerical Heat Transfer, Part B, 1996, 30(3): 291-314.
    [8] Choi S K. Note on the use of momentum interpolation method for unsteady flows[J]. Numerical Heat Transfer, Part A, 1999, 36(5): 545-550.
    [9] Barton I E, Kirby R. Finite difference scheme for the solution of fluid flow problems on non-staggered grids[J]. International Journal Numerical Methods in Fluids, 2000, 33(7): 939-959.
    [10] Yu B, Kawaguchi Y, Tao W Q, Ozoe H. Checkerboard pressure predictions due to the under-relaxation factor and time step size for a non-staggered grid with momentum interpolation method[J]. Numerical Heat Transfer, Part B, 2002, 41(1): 85-94.
    [11] Yu B, Tao W Q, Wei J J, Kawaguchi Y, Tagawa T, Ozoe H. Discussion on momentum interpolation method for collocated grids of incompressible flow[J]. Numerical Heat Transfer, Part B, 2002, 42(2): 141-166.
    [12] Date A W. Solution of Navier-Stokes equations on non-staggered[J]. International Journal of Heat Mass Transfer, 1993, 36(4): 1913-1922.
    [13] Date A W. Complete pressure correction algorithm for solution of incompressible Navier-Stokes equations on a non-staggered grids[J]. Numerical Heat Transfer, Part B, 1996, 29(4): 441-458.
    [14] Wang Q W, Wei J G, Tao W Q. An improved numerical algorithm for solution of convective heat transfer problems on non-staggered grid system[J]. Heat and Mass Transfer, 1998, 33(4): 273-288.
    [15] Nie J H, Li Z Y, Wang Q W, Tao W Q. A method for viscous incompressible flows with simplified collocated grid system[C]Proceeding Symposium on Energy and Engineering in 21st Century. 2000, 1: 177-183.
    [16] Leonard B P. A stable and accurate convective modeling procedure based on quadratic upstream interpolation[J]. Computer Methods in Applied Mechanics and Engineering, 1979, 19(1): 59-98.
    [17] Khosla P K, Rubin S G. A diagonally dominant second-order accurate implicit scheme[J]. Computers and Fluids, 1974, 2(2): 207-218.
    [18] Botella O, Peyret R. Benchmark spectral results on the lid-driven cavity flow[J]. Computers and Fluids, 1998, 27(4): 421-433.
  • 加载中
计量
  • 文章访问数:  1455
  • HTML全文浏览量:  63
  • PDF下载量:  1200
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-28
  • 修回日期:  2012-03-31
  • 刊出日期:  2012-08-15

目录

    /

    返回文章
    返回