留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

密度和刚度线性变化对非均匀地壳层中扭转表面波传播的影响

S·古普塔 S·K·维施瓦卡尔玛 D·K·玛里 S·昆杜

S·古普塔, S·K·维施瓦卡尔玛, D·K·玛里, S·昆杜. 密度和刚度线性变化对非均匀地壳层中扭转表面波传播的影响[J]. 应用数学和力学, 2012, 33(10): 1156-1169. doi: 10.3879/j.issn.1000-0887.2012.10.002
引用本文: S·古普塔, S·K·维施瓦卡尔玛, D·K·玛里, S·昆杜. 密度和刚度线性变化对非均匀地壳层中扭转表面波传播的影响[J]. 应用数学和力学, 2012, 33(10): 1156-1169. doi: 10.3879/j.issn.1000-0887.2012.10.002
S.Gupta, S.K.Vishwakarma, D.K.Majhi, S.Kundu. Influence of Linearly Varying Density and Rigidity on Torsional Surface Waves in an Inhomogeneous Crustal Layer[J]. Applied Mathematics and Mechanics, 2012, 33(10): 1156-1169. doi: 10.3879/j.issn.1000-0887.2012.10.002
Citation: S.Gupta, S.K.Vishwakarma, D.K.Majhi, S.Kundu. Influence of Linearly Varying Density and Rigidity on Torsional Surface Waves in an Inhomogeneous Crustal Layer[J]. Applied Mathematics and Mechanics, 2012, 33(10): 1156-1169. doi: 10.3879/j.issn.1000-0887.2012.10.002

密度和刚度线性变化对非均匀地壳层中扭转表面波传播的影响

doi: 10.3879/j.issn.1000-0887.2012.10.002
详细信息
  • 中图分类号: O347.4+4

Influence of Linearly Varying Density and Rigidity on Torsional Surface Waves in an Inhomogeneous Crustal Layer

  • 摘要: 研究了覆盖在非均匀半无限空间上的非均匀地壳层中,扭转表面波传播的可能性.地壳层的非均匀性随着厚度线性变化,非均匀半无限空间的非均匀性表现为3种类型,即指数型、二次型和双曲型.采用封闭形式,可以分别推导出上述3种类型非均匀性的色散方程.对于覆盖在半空间上的同一地壳层,色散方程与经典案例的方程一致.研究发现,随着非均匀地壳层中密度线性变化的非均匀参数的增大,相速度减小,而由刚度引起的非均匀因素对相速度的影响相反.
  • [1] Ewing W M, Jardetzky, W S, Press F. Elastic Waves in Layered Media[M]. New York: McGraw-Hill, 1957.
    [2] Vrettos Ch. In-plane vibrations of soil deposits with variable shear modulus—Ⅰ: surface waves[J]. Int J Numer Anal Meth Geomech, 1990, 14(3): 209-222.
    [3] Kennett B L N, Tkalcˇic' H. Dynamic earth: crustal and mantle heterogeneity[J]. Aust J Earth Sci, 2008, 55(3): 265-279.
    [4] Reissner E, Sagoci H F. Forced torsional oscillations of an elastic half-space Ⅰ[J]. J Appl Phy, 1944, 15(9): 652.
    [5] Rayleigh L. On waves propagated along plane surface of an elastic solid[J]. Proc Lond Math Soc, 1885, 17(3): 4-11.
    [6] Georgiadis H G, Vardoulakis I, Lykotrafitis G. Torsional surface waves in a gradient-elastic half space[J]. Wave Motion, 2000, 31(4): 333-348.
    [7] Meissner E. Elastic oberflachenwellen mit dispersion in einem inhomogeneous medium[J]. Viertlagahrsschriftder Naturforschenden Gesellschaft, 1921, 66: 181-195.
    [8] Bhattacharya R C. On the torsional wave propagation in a two-layered circular cylinder with imperfect bonding[J]. Proc Indian natn Sci Acad, 1975, 41(6): 613-619.
    [9] Dey S, Dutta A. Torsional wave propagation in an initially stressed cylinder[J]. Proc Indian Natn Sci Acad, 1992, 58(5): 425-429.
    [10] Chattopadhyay A, Gupta S, Kumari P, Sharma V K. Propagation of torsional waves in an inhomogeneous layer over an inhomogeneous half space[J]. Meccanica, 2011, 46(4): 671-680.
    [11] Pujol J. Elastic Wave Propagation and Generation in Seismology[M]. Cambridge: Cambridge University Press, 2003.
    [12] Chapman C. Fundamentals of Seismic Wave Propagation[M]. Cambridge: Cambridge University Press, 2004.
    [13] Gupta S, Chattopadhyay A, Kundu S, Gupta A K. Effect of rigid boundary on the propagation of torsional waves in a homogeneous layer over a heterogeneous half-space[J]. Arch Appl Mech, 2010, 80(2): 143-150.
    [14] Davini C, Paroni R, Puntle E. An asymptotic approach to the torsional problem in thin rectangular domains[J]. Meccanica, 2008, 43(4): 429-435.
    [15] Vardoulakis I. Torsional surface waves in inhomogeneous elastic media[J]. Int J Numer Analyt Meth Geomech, 1984, 8(3): 287-296.
    [16] Akbarov S D, Kepceler T, Egilmez M Mert. Torsional wave dispersion in a finitely pre-strained hollow sandwich circular cylinder[J]. Journal of Sound and Vibration, 2011, 330(18/19): 4519-4537.
    [17] Ozturk A, Akbbarov S D. Torsional wave propagation in a pre-stressed circular cylinder embedded in a pre-stressed elastic medium[J]. Applied Mathematical Modelling, 2009, 33(9): 3636-3649.
    [18] Bullen K E. The problem of the Earth’s density variation[J]. Bull Seismol Soc Am, 1940, 30(3): 235-250.
    [19] Sari C, Salk M. Analysis of gravity anomalies with hyperbolic density contrast: an application to the gravity data of Western Anatolia[J]. J Balkan Geophys Soc, 2002, 5(3): 87-96.
    [20] Love A E H. The Mathematical Theory of Elasticity[M]. Cambridge: Cambridge University Press, 1927.
    [21] Whittaker E T, Watson G N. A Course in Modern Analysis[M]. 4th ed. Cambridge: Cambridge University Press, 1990.
    [22] Gubbins D. Seismology and Plate Tectonics[M]. Cambridge, New York: Cambridge University press, 1990: 170.
    [23] Tierstein H F. Linear Piezoelectric Plate Vibrations[M]. New York: Plenum Press, 1969.
  • 加载中
计量
  • 文章访问数:  1264
  • HTML全文浏览量:  37
  • PDF下载量:  810
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-15
  • 修回日期:  2012-04-07
  • 刊出日期:  2012-10-15

目录

    /

    返回文章
    返回