留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Casson流体作磁流体动力学流动时的Soret和Dufour效应

T·哈亚特 S·A·谢赫扎德 A·阿尔舍德

T·哈亚特, S·A·谢赫扎德, A·阿尔舍德. Casson流体作磁流体动力学流动时的Soret和Dufour效应[J]. 应用数学和力学, 2012, 33(10): 1211-1221. doi: 10.3879/j.issn.1000-0887.2012.10.007
引用本文: T·哈亚特, S·A·谢赫扎德, A·阿尔舍德. Casson流体作磁流体动力学流动时的Soret和Dufour效应[J]. 应用数学和力学, 2012, 33(10): 1211-1221. doi: 10.3879/j.issn.1000-0887.2012.10.007
T.Hayat, S.A.Shehzad, A.Alsaedi. Soret and Dufour Effects in the Magnetohydrodynamic(MHD) Flow of Casson Fluid[J]. Applied Mathematics and Mechanics, 2012, 33(10): 1211-1221. doi: 10.3879/j.issn.1000-0887.2012.10.007
Citation: T.Hayat, S.A.Shehzad, A.Alsaedi. Soret and Dufour Effects in the Magnetohydrodynamic(MHD) Flow of Casson Fluid[J]. Applied Mathematics and Mechanics, 2012, 33(10): 1211-1221. doi: 10.3879/j.issn.1000-0887.2012.10.007

Casson流体作磁流体动力学流动时的Soret和Dufour效应

doi: 10.3879/j.issn.1000-0887.2012.10.007
详细信息
  • 中图分类号: O373

Soret and Dufour Effects in the Magnetohydrodynamic(MHD) Flow of Casson Fluid

  • 摘要: 考虑Soret和Dufour效应,对Casson流体在可伸缩表面上,作磁流体动力学流动时的影响.首先导出相关的方程,然后用同伦法构造级数解.给出并讨论了速度、温度和浓度的场结果;在不同的物理参数下,得到并分析了表面摩擦因数、Nusselt数和Sherwood数的值;并验证了级数解的收敛性.
  • [1] Crane L J. Flow past a stretching plate[J]. Zeitschrift für Angewandte Mathematik und Physik, 1970, 21(4): 645-647.
    [2] Hassani M, Tabar M M, Nemati H, Domairry G, Noori F. An analytical solution for boundary layer flow of a nanofluid past a stretching sheet[J]. International Journal of Thermal Sciences, 2011, 50(11): 2256-2263.
    [3] Kazem S, Shaban M, Abbasbandy S. Improved analytical solutions to a stagnation-point flow past a porous stretching sheet with heat generation[J]. Journal of the Franklin Institute, 2011, 348(8): 2044-2058.
    [4] Hayat T, Javed T, Abbas Z. Slip flow and heat transfer of a second grade fluid past a stretching sheet through a porous space[J]. International Journal of Heat and Mass Transfer, 2008, 51(17/18): 4528-4534.
    [5] Rahman G M A. Thermal-diffusion and MHD for Soret and Dufour’s effects on Hiemenz flow and mass transfer of fluid flow through porous medium onto a stretching surface[J]. Physica B: Condensed Matter, 2010, 405(11): 2560-2569.
    [6] Yao B, Chen J. Series solution to the Falkner-Skan equation with stretching boundary[J]. Applied Mathematics and Computation, 2009, 208(1): 156-164.
    [7] Fang T, Zhang J, Yao S. A new family of unsteady boundary layers over a stretching surface[J]. Applied Mathematics and Computation, 2010, 217(8): 3747-3755.
    [8] Yao S, Fang T, Zhang J. Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(2): 752-760.
    [9] Hayat T, Awais M, Qasim M, Hendi A A. Effects of mass transfer on the stagnation point flow of an upper-convected Maxwell (UCM) fluid[J]. International Journal of Heat and Mass Transfer, 2011, 54(15/16):3777-3782.
    [10] Hayat T, Qasim M, Abbas Z. Radiation and mass transfer effects on the magnetohydrodynamic unsteady flow induced by a stretching sheet[J]. Z Naturforsch, A, 2010, 65: 231-239.
    [11] Ahmad A, Asghar S. Flow of a second grade fluid over a sheet stretching with arbitrary velocities subject to a transverse magnetic field[J]. Applied Mathematics Letters, 2011, 24(11): 1905-1909.
    [12] Muhaimina, Kandasamy R, Hashim I. Effect of chemical reaction, heat and mass transfer on nonlinear boundary layer past a porous shrinking sheet in the presence of suction[J]. Nuclear Engineering and Design, 2010, 240(5): 933-939.
    [13] Kandasamy R, Periasamy K, Prabhu K K S. Chemical reaction, heat and mass transfer on MHD flow over a vertical stretching surface with heat source and thermal stratification effects[J]. International Journal of Heat and Mass Transfer, 2005, 48(21/22): 4751-4761.
    [14] Mrill E W, Benis A M, Gilliland E R, Sherwood T K, Salzman E W. Pressure flow relations of human blood hollow fibers at low flow rates[J]. Journal of Applied Physiology, 1965, 20: 954-967.
    [15] McDonald D A. Blood Flows in Arteries[M]. 2nd ed. London: Arnold, 1974.
    [16] Vosughi H, Shivanian E, Abbasbandy S. A new analytical technique to solve Volterra’s integral equations[J]. Mathematical Methods in the Applied Sciences, 2011, 34(10): 1243-1253.
    [17] Liao S J. Beyond Perturbation: Introduction to Homotopy Analysis Method[M]. Boca Raton: Chapman and Hall, CRC Press, 2003.
    [18] Abbasbandy S, Shirzadi A. Homotopy analysis method for a nonlinear chemistry problem[J]. Studies in Nonlinear Sciences, 2010, 1(4): 127-132.
    [19] Ziabakhsh Z, Domairry G, Bararnia H, Babazadeh H. Analytical solution of flow and diffusion of chemically reactive species over a nonlinearly stretching sheet immersed in a porous medium[J]. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41(1): 22-28.
    [20] Rashidi M M, Pour S A M, Abbasbandy S. Analytic approximate solutions for heat transfer of a micropolar fluid through a porous medium with radiation[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(4): 1874-1889.
    [21] Hayat T, Shehzad S A, Qasim M, Obaidat S. Steady flow of Maxwell fluid with convective boundary conditions[J]. Z Naturforsch, A, 2011, 66: 417-422.
    [22] Hayat T, Shehzad S A, Qasim M, Obaidat S. Radiative flow of a Jeffrey fluid in a porous medium with power law heat flux and heat source[J]. Nuclear Engineering and Design, 2012, 243: 15-19.
    [23] Hayat T, Qasim M. Influence of thermal radiation and Joule heating on MHD flow of a Maxwell fluid in the presence of thermophoresis[J]. International Journal of Heat and Mass Transfer, 2010, 53(21/22): 4780-4788.
    [24] Yao B. Approximate analytical solution to the Falkner-Skan wedge flow with the permeable wall of uniform suction[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(8): 3320-3326.
    [25] Rashidi M M, Pour S A M. Analytic approximate solutions for unsteady boundary-layer flow and heat transfer due to a stretching sheet by homotopy analysis method[J]. Nonlinear Analysis: Modelling and Control, 2010, 15(1): 83-95.
    [26] Liao S J. An optimal homotopy-analysis approach for strongly nolinear differential equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(8): 2003-2016.
    [27] Vyas P. Radiative MHD flow over a non-isothermal stretching sheet in a porous medium[J]. Applied Mathematical Sciences, 2010, 4(50): 2475-2484.
    [28] Turkyilmazoglu M. Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching sheet[J]. International Journal of Thermal Sciences, 2011, 50(11): 2264-2276.
  • 加载中
计量
  • 文章访问数:  1674
  • HTML全文浏览量:  25
  • PDF下载量:  923
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-27
  • 修回日期:  2012-04-06
  • 刊出日期:  2012-10-15

目录

    /

    返回文章
    返回