## 留言板

 引用本文: 马宇立, 陈继伟, 刘咏泉, 苏先樾. 基于孔洞分布理论的多孔材料板振动分析[J]. 应用数学和力学, 2012, 33(12): 1392-1402.
MA Yu-li, CHEN Ji-wei, LIU Yong-quan, SU Xian-yue. Vibration analysis of foam plates based on cell volume distribution[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1392-1402. doi: 10.3879/j.issn.1000-0887.2012.12.002
 Citation: MA Yu-li, CHEN Ji-wei, LIU Yong-quan, SU Xian-yue. Vibration analysis of foam plates based on cell volume distribution[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1392-1402.

## 基于孔洞分布理论的多孔材料板振动分析

##### doi: 10.3879/j.issn.1000-0887.2012.12.002

###### 作者简介:马宇立(1983—),男,上海人,工程师,博士(E-mail: ma-yl@sinr.cn);苏先樾(联系人. Tel: +86-10-62759378; E-mail: xyswsk@pku.edu.cn).
• 中图分类号: O113.1;O32

## Vibration analysis of foam plates based on cell volume distribution

Funds: Project supported by the National Natural Science Foundation of China (No. 90916007)
• 摘要: 主要研究了不规则几何结构多孔材料制备的板材的振动分析．基于Gibson-Ashby等效模量计算，引入了分布因子加以改进原有的理论．对于材料的孔洞分布情况，提出了Burr分布的概率密度拟合，获得了Burr分布的3个自变量参数并用实际的孔洞几何参数进行了比对与描述．基于平板振动理论和等效模量理论，计算出了随着孔洞分布情况变化下的平板固有振动频率，并分析了孔洞尺寸与频率间的关系．之后引入了尺度因子来量化描述平均孔洞尺寸对多孔平板的频率影响．结论证明了改进的等效理论能够有效地体现孔洞的分布对平板力学性能的改变，论述了孔洞尺寸范围，孔洞离散度以及平均孔洞尺寸对多孔方板结构固有频率的影响．这种影响将会对多孔材料结构的优化设计起指导作用．
•  [1] Gibson L J, Ashby M F. Cellular Solids: Structure and Properties[M]. 2nd ed. Cambridge: Press Syndicate of University of Cambridge, 1997. [2] Hausherr J M, Krenkel W, Fischer F, Altstadt V. Nondestructive characterization of highperformance C/SiCceramics using X-ray-computed tomography[J]. International Journal of Applied Ceramic Technology, 2010, 7(3): 361-368. [3] Marmottant A, Salvo L, Martin C L, Mortensen A. Coordination measurements in compacted NaCl irregular powders using Xray microtomography[J]. Journal of the European Ceramic Society, 2008, 28(13): 24412449. [4] Guo L W, Yu J L. Bending behavior of aluminum foamfilled double cylindrical tubes[J]. Acta Mechanica, 2011, 222(3/4): 233-244. [5] Kurpa L, Pilgun G, Amabili M. Nonlinear vibrations of shallow shells with complex boundary: R-functions method and experiments[J].Journal of Sound and Vibration, 2007, 306(3/5): 580-600. [6] Elliott J A, Windle A H, Hobdell J R, Eeckhaut G, Oldman R J, Ludwig W, Boller E, Cloetens P, Baruchel J. In-situ deformation of an open-cell flexible polyurethane foam characterised by 3D computed microtomography[J]. Journal of Materials Science, 2002, 37(8): 1547-1555. [7] Qian L F, Batra R C, Chen L M. Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local PetrovGalerkin method[J].Composites Part B: Engineering, 2004, 35(6/8): 685-697. [8] Viot P, Plougonven E, Bernard D. Microtomography on polypropylene foam under dynamic loading: 3D analysis of bead morphology evolution[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(8): 1266-1281. [9] Van Dommelen J A W, Wismans J G F, Govaert L E. Xray computed tomographybased modeling of polymeric foams: the effect of finite element model size on the large strain response[J]. Journal of Polymer Science Part BPolymer Physics, 2010, 48(13): 1526-1534. [10] Ashby M F. Materials Selection in Mechanical Design[M]. 2nd ed. Oxford: Butterworth Heinemann, 1999. [11] Ashby M F. Designing hybrid materials[J]. Acta Materialia, 2003, 51(19): 5801-5821. [12] Jeon I, Asahina T, Kang K J, Im S, Lu T J. Finite element simulation of the plastic collapse of closed-cell aluminum foams with X-ray computed tomography[J]. Mechanics of Materials, 2010, 42(3): 227-236.  [13] Jeon I, Katou K, Sonoda T, Asahina T, Kang K J. Cell wall mechanical properties of closedcell Al foam[J]. Mechanics of Materials, 2009, 41(1): 60-73. [14] Teixeira S, Rodriguez M A, Pena P, De Aza A H, De Aza S, Ferraz M P, Monteiro F J. Physical characterization of hydroxyapatite porous scaffolds for tissue engineering[J]. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2009, 29(5): 1510-1514. [15] Ma Y, Pyrz R, RodriguezPerez M A, Escudero J, Rauhe J Ch, Su X. X-ray microtomographyic study of nanoclaypolypropylene foams[J]. Cellular Polymers, 2011, 30(3): 95-110. [16] Wang Y H. Global uniqueness and stability for an inverse plate problem[J].Journal of Optimization Theory and Applications, 2007, 132(1): 161-173. [17] Dai G M, Zhang W H. Size effects of basic cell in static analysis of sandwich beams[J]. International Journal of Solids and Structures, 2008, 45(9): 2512-2533. [18] Chen J W, Liu W, Su X Y. Vibration and buckling of truss core sandwich plates on an elastic foundation subjected to biaxial inplane loads[J]. CMC Computers Materials & Continua, 2011, 24(2): 163-181.  [19] Mindlin R D. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates[J]. Journal of Applied Mechanics, 1951, 18: 31-38.

##### 计量
• 文章访问数:  1925
• HTML全文浏览量:  100
• PDF下载量:  1180
• 被引次数: 0
##### 出版历程
• 收稿日期:  2011-03-14
• 修回日期:  2012-04-12
• 刊出日期:  2012-12-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈