留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

守恒高阶交通流模型的相平面分析

吴春秀 宋涛 张鹏 黄仕进

吴春秀, 宋涛, 张鹏, 黄仕进. 守恒高阶交通流模型的相平面分析[J]. 应用数学和力学, 2012, 33(12): 1403-1410. doi: 10.3879/j.issn.1000-0887.2012.12.003
引用本文: 吴春秀, 宋涛, 张鹏, 黄仕进. 守恒高阶交通流模型的相平面分析[J]. 应用数学和力学, 2012, 33(12): 1403-1410. doi: 10.3879/j.issn.1000-0887.2012.12.003
WU Chun-xiu, SONG Tao, ZHANG Peng, WONG S. C.. Phase-plane analysis of conserved higher-order traffic flow model[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1403-1410. doi: 10.3879/j.issn.1000-0887.2012.12.003
Citation: WU Chun-xiu, SONG Tao, ZHANG Peng, WONG S. C.. Phase-plane analysis of conserved higher-order traffic flow model[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1403-1410. doi: 10.3879/j.issn.1000-0887.2012.12.003

守恒高阶交通流模型的相平面分析

doi: 10.3879/j.issn.1000-0887.2012.12.003
基金项目: 国家自然科学基金资助项目(11072141);上海高校创新团队建设项目
详细信息
    作者简介:

    吴春秀 (1978—),女,安徽人,博士研究生(E-mail: wuchunxiu@shu.edu.cn);张鹏,教授(联系人.E-mail: pzhang@mail.shu.edu.cn).

  • 中图分类号: O29; U121

Phase-plane analysis of conserved higher-order traffic flow model

Funds: Project supported by the National Natural Science Foundation of China (No. 11072141), the Shanghai Program for Innovative Research Team in Universities, the Graduate Innovation Foundation of Shanghai University (No. SHUCX101078), and the University Research Committee, HKU SPACE Research Fund and Faculty of Engineering Top-up Grant of the University of Hong Kong (No. 201007176059)
  • 摘要: 在Lagrange坐标下,运用微分方程定性理论中的相平面分析方法,研究一个近期所提出的守恒高阶交通流模型的行波解.讨论系统的平衡点类型及其稳定性状态,分析相平面中的轨线全局分布结构,验证数值解与解析解的一致性.从而,能够较好地解释现实交通中的时停时走波和瓶颈处的振荡现象,表明所讨论的模型能够描述复杂的拥挤交通.
  • [1] Kerner B S, Konh-user P. Structure and parameters of clusters in traffic flow[J]. Physical Review E, 1994, 50(1): 54-83.  
    [2] Greenberg J M. Congestion redux[J]. SIAM Journal on Applied Mathematics, 2004, 64(4): 1175-1185.  
    [3] Siebel F, Mauser W. Synchronized flow and wide moving jams from balanced vehicular traffic[J]. Physical Review E, 2006, 73(6): 066108.
    [4] ZHANG Peng, WONG S C, DAI Shiqiang. Characteristic parameters of a wide cluster in a higherorder traffic flow model[J]. Chinese Physics Letters, 2006, 23(2): 516-519.  
    [5] ZHANG Peng, Wong S C. Essence of conservation forms in the traveling wave solutions of higherorder traffic flow models[J]. Physical Review E, 2006, 74(2): 026109.  
    [6] Xu R Y, Zhang P, Dai S Q, Wong S C. Admissiblity of a wide cluster solution in “anisotropic” higher-order traffic flow models[J]. SIAM Journal on Applied Mathematics, 2007, 68(2): 562-573.  
    [7] ZHANG Peng, WU Chun-xiu, Wong S C. A semi-discrete model and its approach to a solution for wide moving jam in traffic flow[J]. Physica A, 2012, 391(3): 456-463.  
    [8] Helbing D, Hennecke A, Treiber M. Phase diagram of traffic states in the presence of inhomogeneities[J]. Physical Review Letters, 1999, 82(21): 4360-4363.  
    [9] Treiber M, Kesting A, Helbing D. Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts[J]. Transportation Research Part B, 2010, 44(8/9): 983-1000.  
    [10] Kühne R D. Traffic patterns in unstable traffic flow on freeways[C]//Brannolte U. Highway Capacity and Level of Service.Proceedings of the International Symposium on Highway Capacity. Rotterdam: Balkema, 1991:211-223. 
    [11] Wilson R E, Berg P. Existence and classification of traveling wave solutions to second order highway traffic models[C]//Fukui M, Sugiyama Y, Schreckenberg M, Wolf D E. Traffic and Granular Flow’01. Berlin: Springer, 2003: 85-90.
    [12] Lee H K, Lee HW, Kim D. Steadystate solutions of hydrodynamic traffic models[J]. Physical Review E, 2004, 69(1): 016118.
    [13] Saavedra P, Velasco R M. Phasespace analysis for hydrodynamic traffic models[J]. Physical Review E, 2009, 79(6): 066103.
    [14] Tomer E, Safonov L, Havlin S. Presence of many stable nonhomogeneous states in an inertial carfollowing model[J]. Physical Review Letters, 2000, 84(2): 382-385.  
    [15] Zhang P, Wong S C, Dai S Q. A conserved higher-order anisotropic traffic flow model: description of equilibrium and non-equilibrium flows[J]. Transportation Research Part B, 2009, 43(5): 562-574.
    [16] Lighthill M J, Whitham G B. On kinematic waves—Ⅱ: a theory of traffic flow on long crowded roads[J]. Proceedings of the Royal Society of London, Series A, 1955, 229(1178): 317-345.  
    [17] Richards P I. Shockwaves on the highway[J]. Operations Research, 1956, 4(1): 42-51.  
    [18] ZHANG Peng, QIAO Dian-liang, DONG Li-yun, DAI Shi-qiang, Wong S C. A number of Riemann solvers for a conserved higher-order traffic flow model[C]//The Fourth International Joint Conference on Computational Sciences and Optimization, 2011: 1049-1053. 
    [19] Rascle M. An improved macroscopic model of traffic flow: derivation and links with the Lighthill-Whitham model[J]. Mathematical and Computer Modelling, 2002, 35(5/6): 581-590.  
    [20] Zhang H M. A non-equilibrium traffic model devoid of gaslike behavior[J]. Transportation Research Part B, 2002, 36(3): 275-290. 
  • 加载中
计量
  • 文章访问数:  1976
  • HTML全文浏览量:  123
  • PDF下载量:  1057
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-05
  • 修回日期:  2012-04-30
  • 刊出日期:  2012-12-15

目录

    /

    返回文章
    返回