留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米流体在粘性耗散和Newton传热组合影响下的Sakiadis流动分析

O·D·梅金德

O·D·梅金德. 纳米流体在粘性耗散和Newton传热组合影响下的Sakiadis流动分析[J]. 应用数学和力学, 2012, 33(12): 1442-1450. doi: 10.3879/j.issn.1000-0887.2012.12.006
引用本文: O·D·梅金德. 纳米流体在粘性耗散和Newton传热组合影响下的Sakiadis流动分析[J]. 应用数学和力学, 2012, 33(12): 1442-1450. doi: 10.3879/j.issn.1000-0887.2012.12.006
O. D. MAKINDE. Analysis of Sakiadis flow of nanofluids with viscous dissipation and Newtonian heating[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1442-1450. doi: 10.3879/j.issn.1000-0887.2012.12.006
Citation: O. D. MAKINDE. Analysis of Sakiadis flow of nanofluids with viscous dissipation and Newtonian heating[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1442-1450. doi: 10.3879/j.issn.1000-0887.2012.12.006

纳米流体在粘性耗散和Newton传热组合影响下的Sakiadis流动分析

doi: 10.3879/j.issn.1000-0887.2012.12.006
基金项目: 非洲联盟科学和技术委员会资助项目
详细信息
  • 中图分类号: O241.81; O357.3; O357.4

Analysis of Sakiadis flow of nanofluids with viscous dissipation and Newtonian heating

  • 摘要: 就两类以水为基本流体的Newton纳米流体:内含金属颗粒铜(Cu),或者非金属颗粒二氧化钛(TiO2),研究粘性耗散和Newton传热对移动平板边界层流动的组合影响.利用相似变换,将偏微分的控制方程转换为常微分方程组,并用Runge-Kutta-Fehlberg法和打靶法,对其进行数值求解.由此得到结论,随着纳米颗粒体积分数和Newton传热的增加,移动平板表面的热交换率也增加,但是,随着Brinkmann数的增加,移动平板表面的热交换率反而减小.此外,纳米工作流体Cu-水的移动平板表面热交换率,高于纳米工作流体TiO2-水.
  • [1] Matteucci M E, Hotze M A, Johnston K P, Williams III R O. Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization[J].Langmuir, 2006, 22(21):8951-8959. 
    [2] Choi S U S. Enhancing thermal conductivity of fluids with nanoparticles[C]//Proceedings of ASME International Mechanical Engineering Congress and Exposition, San Francisco, 1995:99-105. 
    [3] Wen D, Ding Y. Experimental investigation into the pool boiling heat transfer of aqueous based c-alumina nanofluids[J]. Journal of Nanoparticle Research, 2005, 7(2):265-274. 
    [4] Oztop H F, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids[J]. International Journal of Heat and Fluid Flow, 2008, 29(5):1326-1336. 
    [5] Abu-Nada E. Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step[J]. International Journal of Heat and Fluid Flow, 2008, 29(1):242-249. 
    [6] Das S K, Choi S U S, Yu W, Pradet T. Nanofluids: Science and Technology[M]. New Jersey: Wiley, 2007. 
    [7] Keblinski P, Prasher R, Eapen J. Thermal conductance of nanofluid is the controversy over[J]. Journal of Nanoparticle Research, 2008, 10(7):1089-1097. 
    [8] Nield D A, Kuznetsov A V. The ChengMinkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid[J]. International Journal of Heat and Mass Transfer, 2009, 52(25/26):5792-5795. 
    [9] Kuznetsov A V, Nield D A. Natural convective boundary-layer flow of a nanofluid past a vertical plate[J]. International Journal of Thermal Sciences, 2010, 49(2): 243-247. 
    [10] Lin J Z, Chan T L, Liu S, Zhou K, Zhou Y, Lee S C. Effects of coherent structures on nanoparticle coagulation and dispersion in a round jet[J].International Journal of Nonlinear Science and Numerical Simulation, 2007, 8(1): 45-54. 
    [11] Lin J Z, Lin P, Chen H. Research on the transport and deposition of nanoparticles in a rotating curved pipe[J]. Physics of Fluids, 2009, 21(12):122001. 
    [12] Yu M Z, Lin J Z, Chan T L. Effect of precursor loading on nonspherical TiO-2 nanoparticle synthesis in a diffusion flame reactor[J]. Chemical Engineering Science, 2008, 63(9): 2317-2329. 
    [13] Buongiorno J. Convective transport in nanofluids[J]. ASME Journal of Heat Transfer, 2006, 128(3): 240-250. 
    [14] Sakiadis B C. Boundary-layer behaviour on continuous solid surfaces—Ⅰ: boundary layer equations for 2-dimensional and axisymmetric flow[J]. American Institute of Chemical Engineers Journal, 1961, 7(1):26-28. 
    [15] Takhar H S, Nitu S, Pop I. Boundary layer folw due to a moving plate: variable fluid properties[J]. Acta Mechanica, 1991, 90(1): 37-42. 
    [16] Tsou F K, Sparrow E M, Goldstein R J. Flow and heat transfer in the boundary layer on a continuous moving surface[J]. International Journal of Heat and Mass Transfer, 1967, 10(2): 219-235. 
    [17] Makinde O D. Free convection flow with thermal radiation and mass transfer past a moving vertical porous plate[J]. International Communications in Heat and Mass Transfer, 2005, 32(10): 1411-1419. 
    [18] Fang T. Boundary layer flow over a shrinking sheet with powerlaw velocity[J]. International Journal of Heat and Mass Transfer, 2008, 51(25/26): 5838-5843. 
    [19] Makinde O D, Aziz A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition[J]. International Journal of Therma Sciences, 2011, 50(7): 1326-1332.  
    [20] Ahmad S, Rohni A M, Pop I. Blasius and Sakiadis problems in nanofluids[J]. Acta Mechanica, 2011, 218(3/4): 195-204. 
    [21] Aziz A. A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(4):1064-1068. 
    [22] Bataller R C. Radiation effects for the Blasius and Sakiadis flows with a convective surface boundary condition[J]. Applied Mathematics and Computation, 2008, 206(2): 832-840. 
  • 加载中
计量
  • 文章访问数:  2039
  • HTML全文浏览量:  99
  • PDF下载量:  1251
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-19
  • 修回日期:  2012-04-29
  • 刊出日期:  2012-12-15

目录

    /

    返回文章
    返回