留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进的微分变换法对不连续冲击波的求解

邹丽 王振 宗智 邹东阳 张朔

邹丽, 王振, 宗智, 邹东阳, 张朔. 改进的微分变换法对不连续冲击波的求解[J]. 应用数学和力学, 2012, 33(12): 1465-1476. doi: 10.3879/j.issn.1000-0887.2012.12.008
引用本文: 邹丽, 王振, 宗智, 邹东阳, 张朔. 改进的微分变换法对不连续冲击波的求解[J]. 应用数学和力学, 2012, 33(12): 1465-1476. doi: 10.3879/j.issn.1000-0887.2012.12.008
ZOU Li, WANG Zhen, ZONG Zhi, ZOU Dong-yang, ZHANG Shuo. Solving shock wave with discontinuity by enhanced differential transform method (EDTM)[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1465-1476. doi: 10.3879/j.issn.1000-0887.2012.12.008
Citation: ZOU Li, WANG Zhen, ZONG Zhi, ZOU Dong-yang, ZHANG Shuo. Solving shock wave with discontinuity by enhanced differential transform method (EDTM)[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1465-1476. doi: 10.3879/j.issn.1000-0887.2012.12.008

改进的微分变换法对不连续冲击波的求解

doi: 10.3879/j.issn.1000-0887.2012.12.008
基金项目: 国家自然科学基金资助项目(50909017;51109031;50921001;11072053;51009022);教育部博士点基金资助项目(20100041120037);中央高校基本科研业务费专项资金资助项目(DUT12LK52;DUT12LK34);973基金资助项目(2010CB832704;2013CB036101)
详细信息
    作者简介:

    邹丽(1981—),女,辽宁盘锦人,副教授,博士,硕士生导师(联系人.Tel:+86-411-84706521; E-mail: lizou@dlut.edu.cn).

  • 中图分类号: O242.1

Solving shock wave with discontinuity by enhanced differential transform method (EDTM)

Funds: Project supported by the National Natural Science Foundation of China (Nos. 50909017, 51109031, 50921001, 11072053, and 51009022), the Doctoral Foundation of Ministry of Education of China (No. 20100041120037), the Fundamental Research Funds for the Central Universities (Nos. DUT12LK52 and DUT12LK34), and the Major State Basic Research Development Program of China (973 Program) (Nos. 2010CB832704 and 2013CB036101)
  • 摘要: 提出了一种改进的微分变换法,将Padé逼近法与标准微分变换法结合,这种改进的微分变换法主要应用于对冲击波的分析处理方面,能够改善级数的收敛性,并且给出收敛的渐进级数解,甚至精确解,从而为求解强非线性间断问题提供了一种有效的解析方法.
  • [1] Natfeg A H. Introduction to Perturbation Techniques[M]. New York: John Wiley & Sons, 1981. 
    [2] Natfeg A H. Problems in Perturbation[M]. New York: John Wiley & Sons, 1985. 
    [3] Lyapunov A M. General Problem on Stability of Motion[M]. London: Taylor & Francis, 1992. 
    [4] Adomain G. Nonlinear stochastic differential equations[J]. Journal Mathematical Analysis and Application, 1976, 55(2): 441-452.
    [5] Adomain G. A global method for solution of complex systems[J]. Mathematical Model, 1984, 5(4): 521-568. 
    [6] Adomain G. Solving Frontier Problems of Physics: the Decomposition Method[M]. Boston and London: Kluwer Academic Publishers, 1994. 
    [7] 廖世俊.同伦分析方法:一种新的求解非线性问题的近似解析方法[J]. 应用数学和力学, 1998, 19(10): 885-890.(LIAO Shi-jun. Homotopy analysis method: a new analytic method for nonlinear problems[J].Applied Mathematics and Mechanics(English Edition), 1998, 19(10): 957-962.) 
    [8] 廖世俊.超越摄动:同伦分析方法导论[M]. 科学出版社, 2007.(LIAO Shi-jun. Beyond Perturbation: Introduction to the Homotopy Analysis Method[M]. Science Press, 2007.(in Chinese)) 
    [9] 卢东强. 自由表面与粘性尾迹的相互作用[J]. 应用数学和力学, 2004, 25(6): 591598.(LU Dong-qiang. Interaction of viscous waves with a free surface[J]. Applied Mathematics and Mechanics(English Edition), 2004, 25(6): 647-655.)
    [10] 卢东强, 戴世强, 张宝善. 一个二流体系统中非线性水波的Hamilton描述[J]. 应用数学和力学, 1999, 20(4): 331-336.(LU Dong-qiang, DAI Shi-qiang, ZHANG Bao-shan. Hamiltonian formulation of nonlinear water waves in a twofluid system[J]. Applied Mathematics and Mechanics(English Edition), 1999, 20(4): 343-349.) 
    [11] Zhou J K. Differential Transform and Its Applications for Electrical Circuits[M]. Wuhan, China: Huazhong University Press, 1986. 
    [12] Ravi Kanth A S V, Aruna K. Differential transform method for solving the linear and nonlinear KleinGordon equation[J]. Computer Physics Communication, 2009, 180(5): 708-711.
    [13] Chen C K, Ho S H. Solving partial differential equations by twodimensional differential transform method[J]. Applied Mathematics Computation, 1999, 106(2/3): 171-179.
    [14] Jang M J, Chen C L, Liu Y C. Two-dimensional differential transformation method for partial differential equation[J]. Applied Mathematics Computation, 2001, 121(2/3): 261-270.
    [15] Adbel-Halim Hassan I H. Different applications for the differential transformation in the differential equations[J]. Applied Mathematics Computation, 2002, 129(2/3): 183-201.
    [16] Ayaz F. On the two-dimensional differential transform method[J]. Applied Mathematics Computation, 2003, 143(2/3): 361-374.
    [17] Ayaz F. Solutions of the system of differential equations by differential transform method[J]. Applied Mathematics Computation, 2004, 147(2): 547-567.
    [18] Wang Z, Zou L, Zhang H Q. Applying homotopy analysis method for solving differentialdifference equation [J]. Physics Letters A, 2007, 369(1): 77-84.
    [19] Zou L, Zong Z, Wang Z, He L. Solving the discrete KdV equation with homotopy analysis method[J]. Physics Letters A, 2007, 370(3/4): 287-294.
    [20] Adbel-Halim Hassan I H. Comparison differential transformation technique with adomian decomposition method for linear and nonlinear initial value problems[J]. Chaos, Solutions & Fractals, 2008, 36(1): 53-65.
    [21] Figen K O, Ayaz F. Solitary wave solutions for the KdV and mKdV equations by differential transform method[J]. Chaos, Solution & Fractals, 2009, 41(1): 464-472.
    [22] Cole J D.On a quasi-linear parabolic equation occurring in aerodynamics[J]. Quart Applied Mathematics, 1951, 9: 225-236. 
    [23] Bateman H. Some recent researches on the motion of fluids[J]. Monthly Weather Review, 1915, 43(4): 163-170.
    [24] Burgers J M. A mathematical model illustrating the theory of turbulence[J]. Advance Applied Mechanics, 1948, 1: 171-199.
    [25] Zhang X H, Ouyang J, Zhang L. Elementfree characteristic Galerkin method for Burgers equation[J]. Engineering Analysis with Boundary Elements, 2009, 33(3): 356-362.
    [26] Kutluay S, Eeen A, Dag I. Numerical solutions of the Burgers equation by the leastsquares quadratic B-spline finite element method[J]. Journal of Computational and Applied Mathematics, 2004, 167(1): 21-33.
    [27] Whitham G B. Linear and Nonlinear Waves[M]. New York: John Wiley & Sons, 1974. 
    [28] Rosenau P, Hyman J M. Compactons: solitons with finite wavelength[J]. Physical Review Letters, 1993, 70(5): 564567.
    [29] Tian L X, Yin J L. Shockpeakon and shockcompacton solutions for K(p,q)-equation by variational iteration method[J]. Journal of Mathematical Analysis and Applications, 2007, 207(1): 46-52. 
    [30] Camassa R, Holm D D. An integrable shallow water equation with peaked solitons[J]. Physical Review Letters, 1993, 71(11): 1661-1664.
  • 加载中
计量
  • 文章访问数:  1900
  • HTML全文浏览量:  139
  • PDF下载量:  1076
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-21
  • 修回日期:  2012-06-14
  • 刊出日期:  2012-12-15

目录

    /

    返回文章
    返回