留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Reissner板中的夹杂和缺陷问题研究

蒋泉 魏海娥 周志东

蒋泉, 魏海娥, 周志东. Reissner板中的夹杂和缺陷问题研究[J]. 应用数学和力学, 2013, 34(11): 1197-1208. doi: 10.3879/j.issn.1000-0887.2013.11.009
引用本文: 蒋泉, 魏海娥, 周志东. Reissner板中的夹杂和缺陷问题研究[J]. 应用数学和力学, 2013, 34(11): 1197-1208. doi: 10.3879/j.issn.1000-0887.2013.11.009
JIANG Quan, WEI Hai-e, ZHOU Zhi-dong. Research on Reissner Plate With an Inclusion or Flaw[J]. Applied Mathematics and Mechanics, 2013, 34(11): 1197-1208. doi: 10.3879/j.issn.1000-0887.2013.11.009
Citation: JIANG Quan, WEI Hai-e, ZHOU Zhi-dong. Research on Reissner Plate With an Inclusion or Flaw[J]. Applied Mathematics and Mechanics, 2013, 34(11): 1197-1208. doi: 10.3879/j.issn.1000-0887.2013.11.009

Reissner板中的夹杂和缺陷问题研究

doi: 10.3879/j.issn.1000-0887.2013.11.009
基金项目: 国家自然科学基金资助项目(10902055;11172252)
详细信息
    作者简介:

    蒋泉(1974—),男,江苏南通人,博士,副教授,硕士生导师(通讯作者. Tel:+86513-85012659; E-mail: jiang.q@ntu.edu.cn).

  • 中图分类号: O343.7

Research on Reissner Plate With an Inclusion or Flaw

Funds: The National Natural Science Foundation of China(10902055;11172252)
  • 摘要: 基于保角变换技术和Faber级数展开,研究了含任意形状夹杂或缺陷的无限大Reissner板弯曲问题.将变换域中单位圆内、外解析函数分别展开成Faber级数,并将波动函数展开成第一类和第二类修正的n阶Bessel函数;利用边界位移、剪力和弯矩连续性条件得到问题的高阶线性方程组.以含椭圆形夹杂和缺陷的无限大Reissner板柱面弯曲为例,进一步给出了数值算例和理论分析.结果表明,对于软夹杂,板内力矩随夹杂与板厚尺寸比a/h变化非常敏感;在含硬夹杂条件下,板内力矩随夹杂尺寸变化相对不敏感.
  • [1] Sayin G N. Stress Concentration Round Holes [M]. London: Pergamon Press, 1961.
    [2] 何福保, 沈亚鹏. 板壳理论[M]. 西安: 西安交通大学出版社, 1993.(HE Fu-bao, SHEN Ya-peng. Theory of Plates and Shells [M]. Xi’an Jiaotong University Press, 1993.(in Chinese))
    [3] Redwood R G. The bending of a plate loaded through a rigid rectangular inclusion[J]. International Journal of Mechanical Sciences,1965, 7(6): 421-430.
    [4] 贺鹏飞. 弯曲外载作用下夹杂角点的应力奇异性[J]. 同济大学学报(自然科学版), 1996, 24(4): 405-410.(HE Peng-fei. Stress singularity at corner point of an inclusion under moment[J]. Journal of Tongji Univesity(Natural Science),1996, 24(4): 405-410.(in Chinese))
    [5] Cheng Z Q, Reddy J N. Laminated anisotropic thin plate with an elliptic inhomogeneity[J]. Mechanics of Materials,2004, 36(7): 647-657.
    [6] 董春迎. 基于边界元法的非均质薄板弯曲问题的解[J]. 计算力学学报, 2011, 28(1): 25-28. (DONG Chun-ying. BEM-based solution of heterogeneous thin plate bending problems[J]. Chinese Journal of Computational Mechanics,2011, 28(1): 25-28.(in Chinese))
    [7] Rudoy E M. The Griffith formula and CherepanovRice integral for a plate with a rigid inclusion and a crack[J]. J Math Sci,2012, 186(3): 511-529.
    [8] 毛春见, 许希武, 郭树祥. 含椭圆孔有限大薄板弯曲应力分析[J]. 固体力学学报, 2012, 31(1): 80-85.(MAO Chun-jian, XU Xi-wu, GUO Shu-xiang. Stress analysis of a finite anisotropic thin plate with an elliptical hole[J]. Chinese Journal of Solid Mechanics,2012, 31(1): 8085.(in Chinese))
    [9] 许希武, 章怡宁, 杨旭. 含孔有限大各向异性板的应力集中[J]. 航空学报, 1995, 16(3): 370-375.(XU Xi-wu, ZHANG Yi-ning, YANG Xu. Stress concentration of finite anisotropic plate with elliptical hole[J]. Acta Aeronautica et Astronautica Sinica,1995, 16(3): 370-375.(in Chinese))
    [10] Hsieh M C, Hwu C. Anisotropic elastic plates with holes/cracks/inclusions subjected to out-of-plane bending moments[J].International Journal of Solids and Structures,2002, 39(19): 4905-4925.
    [11] Hwu C, Tan C J. In-plane/out-of-plane concentrated forces and moments on composite laminates with elliptical elastic inclusions[J]. International Journal of Solids and Structures,2007, 44(20): 6584-6606.
    [12] Gao L M, Wang J, Zhong Z, Du J K. An analysis of surface acoustic wave propagation in functionally graded plates with homotopy analysis method[J].Acta Mech,2009, 208(3): 249-258.
    [13] Liu D Y, Wang C Y, Chen W Q. Free vibration of FGM plates with inplane material inhomogeneity[J].Composite Structures,2010, 92(5): 1047-1051.
    [14] Kunets Y I, Matus V V. Modelling of flexural vibrations of a Kirchhoff plate with a thin-walled elastic inclusion of weak contrast[J].J Math Sci,2012, 187(5): 667-674.
    [15] Palermo L. The tangential differential operator applied to a stress boundary integral equation for plate bending including the shear deformation effect[J].Engineering Analysis With Boundary Elements,2012, 36(8): 1213-1225.
    [16] Sladek J, Sladek V, Krahulec S, Pan E. Analyses of functionally graded plates with a magnetoelectroelastic layer[J].Smart Materials and Structures,2013, 22(3): 35003-35019.
    [17] Zhong Y F, Chen L, Yu W B, Zhang L L. Asymptotical construction of a fully coupled, Reissner-Mindlin model for piezoelectric and piezomagnetic laminates[J]. Composite Structures,2012, 94(12): 3583-3591.
    [18] 吕品, 黄茂光. Reissner板弯曲的复变函数分析方法[J]. 力学学报, 1990, 22(6): 689-699. (Lü Pin, HUANG Mao-guang. Complex variable analytic method for solving Reissner plate bending problem[J]. Acta Mechanica Sinica,1990, 22(6): 689-699.(in Chinese))
    [19] 杨丽敏, 柳春图, 曾晓辉. 含圆孔压电板弯曲问题[J]. 机械强度, 2005, 27(1): 85-94.(YANG Li-min, LIU Chun-tu, ZENG Xiao-hui. Bending problem of piezoelectric plate with a circular hole[J]. Journal of Mechanical Strength, 2005, 27(1): 85-94.(in Chinese))
    [20] Opanasovych V K, Yatsyk I M, Sulym H T. Bending of Reissner’s plate containing a through-the-thickness crack by concentrated moments taking into account the width of a contact zone of its faces[J]. J Math Sci, 2012, 187(5): 620-634.
    [21] 王子昆, 李丽娟. 含球形空腔或刚性夹杂的中厚圆板在弯曲变形时的弹性场[J]. 应用力学学报, 1989, 6(2): 51-60.(WANG Zikun, LI Li-juan. The elastic field of middle thick circular plate with a spherical cavern or a rigid inclusion undergoing bending load[J].Chinese Journal of Applied Mechanics, 1989, 6(2): 51-60.(in Chinese))
    [22] Muskhelishvili N I. Some Basic Problems of the Mathematical Theory of Elasticity [M]. Groningen: Noordhoff, 1975.
    [23] Mazurak L P, Berezhnyts’kyi L T, Kachur P S. A method for the determination of the elastic equilibrium of isotropic bodies with curvilinear inclusions—part 1: mathematical foundations[J]. Mater Sci,1998,34(6): 760-772.
    [24] Curtiss J H. Faber polynomials and the Faber series[J].Am Math Mon,1971, 78(6): 577-596.
    [25] Luo J C, Gao C F. Faber series method for plane problems of an arbitrarily shaped inclusion[J].Acta Mech, 2009,208(3): 133-145.
    [26] Luo J C, Gao C F. Stress field of a coated arbitrary shape inclusion[J]. Meccanica, 2011, 46(5): 1055-1071.
  • 加载中
计量
  • 文章访问数:  1197
  • HTML全文浏览量:  111
  • PDF下载量:  1293
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-25
  • 修回日期:  2013-06-27
  • 刊出日期:  2013-11-15

目录

    /

    返回文章
    返回