留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近临界流体微通道内流动稳定性和换热特性研究

陈林 张信荣

陈林, 张信荣. 近临界流体微通道内流动稳定性和换热特性研究[J]. 应用数学和力学, 2014, 35(3): 233-246. doi: 10.3879/j.issn.1000-0887.2014.03.001
引用本文: 陈林, 张信荣. 近临界流体微通道内流动稳定性和换热特性研究[J]. 应用数学和力学, 2014, 35(3): 233-246. doi: 10.3879/j.issn.1000-0887.2014.03.001
CHEN Lin, ZHANG Xin-rong. Flow Stability and Heat Transfer Characteristics of Near-Critical Fluid in Micro-Scale Channels[J]. Applied Mathematics and Mechanics, 2014, 35(3): 233-246. doi: 10.3879/j.issn.1000-0887.2014.03.001
Citation: CHEN Lin, ZHANG Xin-rong. Flow Stability and Heat Transfer Characteristics of Near-Critical Fluid in Micro-Scale Channels[J]. Applied Mathematics and Mechanics, 2014, 35(3): 233-246. doi: 10.3879/j.issn.1000-0887.2014.03.001

近临界流体微通道内流动稳定性和换热特性研究

doi: 10.3879/j.issn.1000-0887.2014.03.001
基金项目: 国家自然科学基金(51276001)
详细信息
    作者简介:

    陈林(1987—),男,重庆人,博士生(Tel: +86-10-82529066; E-mail: chenlinpku06@pku.edu.cn)

  • 中图分类号: O354

Flow Stability and Heat Transfer Characteristics of Near-Critical Fluid in Micro-Scale Channels

Funds: The National Natural Science Foundation of China(51276001)
  • 摘要: 微尺度条件下的化工、医药、传热与能源利用等系统的研究已经成为极具潜力和挑战性的课题.相应条件下流体流动和换热的分析必须考虑尺度效应所带来的系列问题.该研究采用了数值模拟方法对近临界二氧化碳流体在微尺度通道内的流动稳定性和换热特性进行了探索.研究发现,在近临界区域内由于流体较强的膨胀特性和较低的热扩散特性,在微尺度几何条件下会产生瞬态不稳定的漩涡流动.该种条件下微尺度对流换热和混合效率都得到了大幅提高.进一步,研究针对微尺度局部稳定性演化进行了机理分析并应用了参数估计,总结获得了微通道内近临界流体瞬态换热和混合的基本特性.
  • [1] Kumar V, Paraschivoiu M, Nigam K D P. Single-phase fluid flow and mixing in microchannels[J]. Chemical Engineering Science,2011,66(7): 1329-1373.
    [2] Zappoli B. Near-critical fluid hydrodynamics[J]. Comptes Rendus Mécanique,2003,331(10): 713-726.
    [3] Carlès P. A brief review of the thermophysical properties of supercritical fluids[J].The Journal of Supercritical Fluids,2010,53(1/3): 2-11.
    [4] Onuki A, Hao H, Ferrell R A. Fast adiabatic equilibration in a single-component fluid near the liquid-vapor critical point[J]. Physical Review A,1990,41(4): 2256-2259.
    [5] Frhlich T, Beysens D, Garrabos Y. Piston-effect-induced thermal jets in near-critical fluids[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics,2006,74(4): 046307.
    [6] Jounet A, Zappoli B, Mojtabi A. Rapid thermal relaxation in near-critical fluids and critical speeding up: discrepancies caused by boundary effects[J]. Physical Review Letters,2000,84(15): 3224-3227.
    [7] CHEN Lin, ZHANG Xin-rong, Okajima J, Maruyama S. Thermal relaxation and critical instability of near-critical fluid microchannel flow[J]. Physical Review E,2013,87(4): 043016.
    [8] CHEN Lin, ZHANG Xin-rong, Okajima J, Maruyama S. Numerical investigation of near-critical fluid convective flow mixing in microchannels[J]. Chemical Engineering Science,2013,97(28): 67-80.
    [9] Zappoli B, Carles P. The thermo-acoustic nature of the critical speeding-up[J]. European Journal of Mechanics B, Fluids,1995,14(1): 41-65.
    [10] Jounet A, Mojtabi A, Ouazzani J, Zappoli B. Low-frequency vibrations in a near critical fluid[J]. Physics of Fluids,2000,12(1): 197-204.
    [11] Pettersen J, Rieberer R, Munkejord S T. Heat transfer and pressure drop for flow of supercritical and subcritical CO2 in microchannel tubes[R]. Final technical report for United States Army, European Research Office of the US Army. London, England, Contract No N68171-99-M-5674, 2000.
    [12] Liao S M, Zhao T S. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes[J]. International Journal of Heat and Mass Transfer,2002,45(25): 5025-5034.
    [13] Liao S M, Zhao T S. Measurement of heat transfer coefficient from supercritical carbon dioxide flowing in horizontal mini/micro channels[J]. Journal of Heat Transfer,2002,124(3): 413-420.
    [14] Kuang G, Ohadi M M, Zhao Y. Experimental study of miscible and immiscible oil effects on heat transfer coefficients and pressure drop in microchannel gas cooling of supercritical CO2[C]// ASME Summer Heat Transfer Conference. Las Vegas, Nevada, USA, 2003: 671-675.
    [15] Kuang G, Ohadi M M, Zhao Y. Experimental study on gas cooling heat transfer for supercritical CO2 in microchannels[C]// The Second International Conference on Microchannels and Minichannels. Rochester, New York, USA, 2004: 325-332.
    [16] Asinari P. Numerical prediction of turbulent convective heat transfer in mini/micro channels for carbon dioxide at supercritical pressure[J]. International Journal of Heat and Mass Transfer,2005,48(18): 3864-3879.
    [17] JIANG Pei-xue, ZHANG Yu, XU Yi-jun, SHI Run-fu. Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers[J]. International Journal of Thermal Sciences,2008,47(8): 998-1011.
    [18] 李志辉. 超临界压力CO2在微细圆管中流动与换热研究[D]. 博士学位论文. 北京: 清华大学, 2008.(LI Zhi-hui. Research on convection heat transfer of CO2 at supercritical pressures in mini/micro scale tubes[D]. PhD Thesis. Beijing: Tsinghua University, 2008.(in Chinese))
    [19] Ducoulombier M, Colasson S, Haberschill P, Tingaud F. Charge reduction experimental investigation of CO2 single-phase flow in a horizontal micro-channel with constant heat flux conditions[J]. International Journal of Refrigeration,2011,34(4): 827-833.
    [20] Flockhart S M, Dhariwal R S. Experimental and numerical investigation into the flow characteristics of channels etched in 〈100〉 silicon[J]. Journal of Fluids Engineering,1998,120(2): 291-295.
    [21] Cui H H, Silber-Li Z H, Zhu S N. Flow characteristics of liquids in micro-tubes driven by a high pressure[J]. Physics of Fluids,2004,16(5): 1803-1810.
    [22] Cheng L X, Thome J R. Cooling of microprocessors using flow boiling CO2 in a micro-evaporator: preliminary analysis and performance comparison[J]. Applied Thermal Engineering,2009,29(11/12): 2426-2432.
    [23] Dimmic G R, Chatoorgoon V, Khartabil H F, Duffey R B. Natural-convection studies for advanced CANDU reactor concepts[J]. Nuclear Engineering and Design,2002,215(1/2): 27-38.
    [24] Carlès P. Thermoacoustic waves near the liquid-vapor critical point[J]. Physics of Fluids,2006,18(12): 126102.
    [25] Thomson W. Hydro-kinetic solutions and observations[J]. Philosophical Magazine Series 4,1871,42(281): 362-377.
    [26] von Helmholtz H L F.über discontinuierliche Flüssigkeits-Bewegungen[J]. Monatsberichte der K?niglichen Preussische Akademie der Wissenschaften zu Berlin,1868,23: 215-228.
    [27] Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability [M]. Oxford: Clarendon Press, 1961.
  • 加载中
计量
  • 文章访问数:  1305
  • HTML全文浏览量:  147
  • PDF下载量:  986
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-27
  • 修回日期:  2013-12-10
  • 刊出日期:  2014-03-15

目录

    /

    返回文章
    返回