留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液滴在固体平表面上均匀蒸发过程的格子Boltzmann模拟

谢驰宇 张建影 王沫然

谢驰宇, 张建影, 王沫然. 液滴在固体平表面上均匀蒸发过程的格子Boltzmann模拟[J]. 应用数学和力学, 2014, 35(3): 247-253. doi: 10.3879/j.issn.1000-0887.2014.03.002
引用本文: 谢驰宇, 张建影, 王沫然. 液滴在固体平表面上均匀蒸发过程的格子Boltzmann模拟[J]. 应用数学和力学, 2014, 35(3): 247-253. doi: 10.3879/j.issn.1000-0887.2014.03.002
XIE Chi-yu, ZHANG Jian-ying, WANG Mo-ran. Lattice Boltzmann Simulation of Droplet Evaporation on Flat Solid Surface[J]. Applied Mathematics and Mechanics, 2014, 35(3): 247-253. doi: 10.3879/j.issn.1000-0887.2014.03.002
Citation: XIE Chi-yu, ZHANG Jian-ying, WANG Mo-ran. Lattice Boltzmann Simulation of Droplet Evaporation on Flat Solid Surface[J]. Applied Mathematics and Mechanics, 2014, 35(3): 247-253. doi: 10.3879/j.issn.1000-0887.2014.03.002

液滴在固体平表面上均匀蒸发过程的格子Boltzmann模拟

doi: 10.3879/j.issn.1000-0887.2014.03.002
基金项目: 国家自然科学基金(51176089);国家重点基础研究发展计划(973计划)(2013CB228301)
详细信息
    作者简介:

    谢驰宇(1990—),男,江西人,硕士生(E-mail: chiyu.xie@gmail.com)

  • 中图分类号: O359+.1

Lattice Boltzmann Simulation of Droplet Evaporation on Flat Solid Surface

Funds: The National Natural Science Foundation of China(51176089); The National Basic Research Program of China (973 Program)(2013CB228301)
  • 摘要: 通过格子玻尔兹曼(lattice Boltzmann method, LBM)数值模拟,研究了液滴在固体平表面上蒸发过程形状变化的机理揭示了不同静态接触角下液滴蒸发过程中重力对其形状变化的影响规律结果表明,重力的影响随着液滴尺度的减小而减弱,达到某一临界点后,重力对蒸发过程的影响可以忽略模拟定量确定了液滴尺寸的这一临界值,并分析了蒸发过程中几个典型时刻液滴内部的流场分布,进一步研究了重力的影响.
  • [1] Kim J-H, Ahn S I, Kim J H, Zin W-C. Evaporation of water droplets on polymer surfaces[J]. Langmuir,2007,23(11): 6163-6169.
    [2] Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A. Capillary flow as the cause of ring stains from dried liquid drops[J].Nature,1997,389(6653): 827-829.
    [3] Yunker P J, Still T, Lohr M A, Yodh A G. Suppression of the coffee-ring effect by shape-dependent capillary interactions[J]. Nature,2011,476(7360): 308-311.
    [4] Malaquin L, Kraus T, Schmid H, Delamarche E, Wolf H. Controlled particle placement through convective and capillary assembly[J]. Langmuir,2007,23(23): 11513-11521.
    [5] Hu H, Larson R G. Evaporation of a sessile droplet on a substrate[J].The Journal of Physical Chemistry B,2002,106(6): 1334-1344.
    [6] Wong T-S, Chen T-H, Shen X, Ho C-M. Nanochromatography driven by the coffee ring effect[J]. Analytical Chemistry,2011,83(6): 1871-1873.
    [7] Brutin D, Zhu Z, Rahli O, Xie J, Liu Q, Tadrist L. Sessile drop in microgravity: creation, contact angle and interface[J].Microgravity Science and Technology,2009,21(1): 67-76.
    [8] Cazabat A-M, Guena G. Evaporation of macroscopic sessile droplets[J].Soft Matter,2010,6(12): 2591-2612.
    [9] Gelderblom H, Marín G, Nair H, Van Houselt A, Lefferts L, Snoeijer J H, Lohse D. How water droplets evaporate on a superhydrophobic substrate[J].Physical Review E,2011,83(2): 026306.
    [10] Ruiz O E, Black W Z. Evaporation of water droplets placed on a heated horizontal surface[J].Journal of Heat Transfer,2002,124(5): 854-863.
    [11] Chen S, Doolen G D. Lattice Boltzmann method for fluid flows[J].Annual Review of Fluid Mechanics,1998,30(1): 329-364.
    [12] Aidun C K, Clausen J R. Lattice-Boltzmann method for complex flows[J].Annual Review of Fluid Mechanics,2010,42(1): 439-472.
    [13] Wang M, Kang Q. Electrokinetic transport in microchannels with random roughness[J].Analytical Chemistry,2009,81(8): 2953-2961.
    [14] Wang M. Structure effects on electro-osmosis in microporous media[J]. Journal of Heat Transfer,2012,134(5): 051020.
    [15] Gunstensen A K, Rothman D H, Zaleski S, Zanetti G. Lattice Boltzmann model of immiscible fluids[J].Physical Review A,1991,43(8): 4320-4327.
    [16] Gunstensen A K, Rothman D H. Lattice-Boltzmann studies of immiscible two-phase flow through porous media[J].Journal of Geophysical Research,1993,98(B4): 6431-6441.
    [17] Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components[J].Physical Review E,1993,47(3): 1815-1819.
    [18] Swift M R, Osborn W R, Yeomans J M. Lattice Boltzmann simulation of nonideal fluids[J].Physical Review Letters,1995,〖STHZ〗75(5): 830-833.
    [19] He X, Chen S, Doolen G D. A novel thermal model for the lattice Boltzmann method in incompressible limit[J].Journal of Computational Physics,1998,146(1): 282-300.
    [20] He X, Chen S, Zhang R. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability[J].Journal of Computational Physics,1999,152(2): 642-663.
    [21] Zheng H W, Shu C, Chew Y T. A lattice Boltzmann model for multiphase flows with large density ratio[J].Journal of Computational Physics,2006,218(1): 353-371.
    [22] Hu H, Larson R G. Marangoni effect reverses coffee-ring depositions[J].The Journal of Physical Chemistry B,2006,110(14): 7090-7094.
  • 加载中
计量
  • 文章访问数:  1881
  • HTML全文浏览量:  252
  • PDF下载量:  1101
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-28
  • 修回日期:  2013-12-17
  • 刊出日期:  2014-03-15

目录

    /

    返回文章
    返回