留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针对蒸发弯月面附近微颗粒运动的数值模拟

潘振海 王昊

潘振海, 王昊. 针对蒸发弯月面附近微颗粒运动的数值模拟[J]. 应用数学和力学, 2014, 35(3): 331-340. doi: 10.3879/j.issn.1000-0887.2014.03.012
引用本文: 潘振海, 王昊. 针对蒸发弯月面附近微颗粒运动的数值模拟[J]. 应用数学和力学, 2014, 35(3): 331-340. doi: 10.3879/j.issn.1000-0887.2014.03.012
PAN Zhen-hai, WANG Hao. Modeling of Micro-Particle’s Motion Near an Evaporating Meniscus[J]. Applied Mathematics and Mechanics, 2014, 35(3): 331-340. doi: 10.3879/j.issn.1000-0887.2014.03.012
Citation: PAN Zhen-hai, WANG Hao. Modeling of Micro-Particle’s Motion Near an Evaporating Meniscus[J]. Applied Mathematics and Mechanics, 2014, 35(3): 331-340. doi: 10.3879/j.issn.1000-0887.2014.03.012

针对蒸发弯月面附近微颗粒运动的数值模拟

doi: 10.3879/j.issn.1000-0887.2014.03.012
基金项目: 国家自然科学基金(51276003)
详细信息
    作者简介:

    潘振海(1985—),男,山东烟台人,博士(E-mail: panzhhpku@163.com)

  • 中图分类号: O368

Modeling of Micro-Particle’s Motion Near an Evaporating Meniscus

Funds: The National Natural Science Foundation of China(51276003)
  • 摘要: 蒸发弯月面附近存在复杂的流动结构.该文建立数值模型以精确模拟蒸发弯月面附近的传热传质过程并描绘液体中微小颗粒的运动轨迹.一方面,将弯月面上的蒸发、气相中的蒸汽扩散以及蒸发导致的界面冷却效果耦合求解.同时利用离散元方法(DEM)对颗粒在流体中的运动及其对流场的反作用进行耦合求解.通过与实验对比,该计算方法能够准确地描述弯月面附近的微颗粒运动轨迹.
  • [1] Picknett R G, Bexon R. The evaporation of sessile or pendant drops in still air[J].Journal of Colloid and Interface Science, 1977,61(2): 336-350.
    [2] Hu H, Larson R G. Evaporation of a sessile droplet on a substrate[J].Journal of Physical Chemistry B,2002,106(6): 1334-1344.
    [3] Popov Y O. Evaporative deposition patterns: spatial dimensions of the deposit[J].Physical Review E, 2005,71(3): 036313.
    [4] Nguyen T A, Nguyen A V. Increased evaporation kinetics of sessile droplets by using nanoparticles[J].Langmuir,2012,28(49): 16725-16728.
    [5] Dunn G J, Wilson S K, Duffy B R, David S, Sefiane K. The strong influence of substrate conductivity on droplet evaporation[J].Journal of Fluid Mechanics,2009,623: 329-351.
    [6] Saada M A, Chikh S, Tadrist L. Evaporation of a sessile drop with pinned or receding contact line on a substrate with different thermophysical properties[J].International Journal of Heat and Mass Transfer, 2013,58(1/2): 197-208.
    [7] Buffone C, Sefiane K. IR measurements of interfacial temperature during phase change in a confined environment[J].Experimental Thermal and Fluid Science,2004,29(1): 65-74.
    [8] Buffone C, Sefiane K, Christy J R E. Experimental investigation of self-induced thermocapillary convection for an evaporating meniscus in capillary tubes using micro-particle image velocimetry[J].Physics of Fluids,2005,17(5): 052104.
    [9] Chamarthy P, Dhavaleswarapu H K, Garimella S V, Murthy J Y, Wereley S T. Visualization of convection patterns near an evaporating meniscus using μPIV[J].Experiments in Fluids,2008,44(3): 431-438.
    [10] Davis S H. Thermocapillary instabilities[J].Annual Review of Fluid Mechanics, 1987,19: 403-435.
    [11] Gazzola D, Scarselli E F, Guerrieri R. 3D visualization of convection patterns in lab-on-chip with open microfluidic outlet[J].Microfluidics and Nanofluidics, 2009,7(5): 659-668.
    [12] Chen C T, Chieng C C, Tseng F G. Uniform solute deposition of evaporable droplet in nanoliter wells[J].Journal of Microelectromechanical Systems,2007,16(5): 1209-1218.
    [13] Schrage R W.A Theoretical Study of Interphase Mass Transfer [M]. New York: Columbia University Press, 1953.
    [14] Schiller L, Naumann A. A drag coefficient correlation[J].Vdi Zeitschrift,1935,77: 318-320.
    [15] PAN Zhen-hai, WANG Hao. Symmetry-to-asymmetry transition of Marangoni flow at a convex volatizing meniscus[J].Microfluidics and Nanofluidics,2010,9(4/5): 657-669.
    [16] PAN Zhen-hai, WANG Fen, WANG Hao. Instability of Marangoni toroidal convection in a microchannel and its relevance with the flowing direction[J].Microfluidics and Nanofluidics,2011,11(3): 327-338.
  • 加载中
计量
  • 文章访问数:  1046
  • HTML全文浏览量:  93
  • PDF下载量:  1136
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-10
  • 修回日期:  2013-12-30
  • 刊出日期:  2014-03-15

目录

    /

    返回文章
    返回