## 留言板

 引用本文: 吴锋, 高强, 钟万勰. 刚-柔体动力学方程的保辛摄动迭代法[J]. 应用数学和力学, 2014, 35(4): 341-352.
WU Feng, GAO Qiang, ZHONG Wan-xie. Iterative Symplectic Perturbation Method for the Dynamic Analysis of Rigid-Flexible Bodies Equations[J]. Applied Mathematics and Mechanics, 2014, 35(4): 341-352. doi: 10.3879/j.issn.1000-0887.2014.04.001
 Citation: WU Feng, GAO Qiang, ZHONG Wan-xie. Iterative Symplectic Perturbation Method for the Dynamic Analysis of Rigid-Flexible Bodies Equations[J]. Applied Mathematics and Mechanics, 2014, 35(4): 341-352.

## 刚-柔体动力学方程的保辛摄动迭代法

##### doi: 10.3879/j.issn.1000-0887.2014.04.001

###### 作者简介:吴锋（1985—），男，江苏靖江人，博士生（E-mail: wufeng_chn@163.com）
• 中图分类号: O313.7

## Iterative Symplectic Perturbation Method for the Dynamic Analysis of Rigid-Flexible Bodies Equations

Funds: The National Basic Research Program of China (973 Program)（2009CB918501）
• 摘要: 针对刚-柔体动力学方程，提出保辛摄动迭代算法．该方法把刚-柔体动力学方程的低频运动和高频振动分开处理，用保辛摄动的思想来处理低、高频耦合作用，从而可以采用较大时间步长进行数值积分，即可给出满意的数值结果，很好地解决了刚性积分问题．数值算例表明该方法是可行的.
•  [1] 于清, 洪嘉振. 柔性多体系统动力学的若干热点问题[J]. 力学进展, 1999,29(2): 145-154.(YU Qing, HONG Jia-zhen. Some topics on flexible multibody system dynamics[J]. Advances in Mechanics,1999,29(2): 145-154.(in Chinese)) [2] Newmark N M. A method of computation for structural dynamics[J]. ASCE Journal of the Engineering Mechanics Division,1959,85(3): 67-94. [3] Bathe K J, Wilson E L.Numerical Methods in Finite Element Analysis [M]. Englewood: Prentice-Hall, 1976. [4] Ascher U M, Petzold L R.Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations [M]. Beijing: Science Press, 2009. [5] 吴志桥. 非惯性系下柔性结构动力学研究[D]. 硕士学位论文. 长沙: 国防科学技术大学, 2004.(WU Zhi-qiao. Study on dynamics for flexible structure in non-inertial frame[D]. Master Thesis. Changsha: National University of Defense Technology, 2004.(in Chinese)) [6] 臧永强. 求解多柔体系统动力方程的违约修正零空间法[D]. 硕士学位论文. 西安: 西安电子科技大学, 2009.(ZANG Yong-qiang. The violation correction null space method of dynamical equation of flexible multi-body systems[D]. Master Thesis. Xi’an: Xidian University, 2009.(in Chinese)) [7] 付士慧, 王琪. 多体系统动力学方程违约修正的数值计算方法[J]. 计算力学学报, 2007,24(1): 44-49.(FU Shi-hui, WANG Qi. A numerical method for constraint stabilization of dynamic equations of multi-body systems[J].Chinese Journal of Computational Mechanics,2007,24(1): 44-49.(in Chinese)) [8] 赵玉立, 吴子燕, 邓子辰. 带伸展柔性附件航天器系统动力响应的精细积分算法[J]. 机械科学与技术, 2002,21(2): 196-197, 201.(ZHAO Yu-li, WU Zi-yan, DENG Zi-chen. The precise integration method for calculating the dynamic behavior of spacecraft with extensional flexible appendages[J].Mechanical Science and Technology,2002,21(2): 196-197, 201.(in Chinese)) [9] 张靖姝, 于洪洁, 洪嘉振. 非线性插值精细积分法在刚柔耦合弹簧摆中的应用[J]. 力学季刊, 2013,34(3): 415-422.(ZHANG Jing-shu, YU Hong-jie, HONG Jia-zhen. Nonlinear interpolation precise integration method in rigid-flexible coupling spring pendulum[J].Chinese Quarterly of Mechanics, 2013,34(3): 415-422.(in Chinese)) [10] 钟万勰, 高强. 约束动力系统的分析结构力学积分[J]. 动力学与控制学报, 2006,4(3): 193-200.(ZHONG Wan-xie, GAO Qiang. Integration of constrained dynamical system via analytical structural mechanics[J].Journal of Dynamics and Control,2006,4(3): 193-200.(in Chinese)) [11] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003.(WANG Xu-cheng.Finite Element Method [M]. Beijing: Tsinghua University Press, 2003.(in Chinese)) [12] Hinch E J.Perturbation Methods [M]. Cambridge: Cambridge University Press, 1991. [13] 钟万勰, 孙雁. 三类保辛摄动及其数值比较[J]. 动力学与控制学报, 2005,3(2): 1-9.(ZHONG Wan-xie, SUN Yan. Numerical comparison for three different symplectic perturbation methods[J].Journal of Dynamics and Control,2005,3(2): 1-9.(in Chinese)) [14] 钟万勰, 姚征. 时间有限元与保辛[J]. 机械强度, 2005,27(2): 178-183.(ZHONG Wan-xie, YAO Zheng. Time domain FEM and symplectic conservation[J].Journal of Mechanical Strength,2005,27(2): 178-183.(in Chinese)) [15] 钟万勰, 孙雁. 小参数摄动法与保辛[J]. 动力学与控制学报, 2005,3(1): 1-6.(ZHONG Wan-xie, SUN Yan. Small parameter perturbation method and symplectic conservation[J].Journal of Dynamics and Control,2005,3(1): 1-6.(in Chinese))
##### 计量
• 文章访问数:  1192
• HTML全文浏览量:  107
• PDF下载量:  1045
• 被引次数: 0
##### 出版历程
• 收稿日期:  2013-11-25
• 刊出日期:  2014-04-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈