留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

刚-柔体动力学方程的保辛摄动迭代法

吴锋 高强 钟万勰

吴锋, 高强, 钟万勰. 刚-柔体动力学方程的保辛摄动迭代法[J]. 应用数学和力学, 2014, 35(4): 341-352. doi: 10.3879/j.issn.1000-0887.2014.04.001
引用本文: 吴锋, 高强, 钟万勰. 刚-柔体动力学方程的保辛摄动迭代法[J]. 应用数学和力学, 2014, 35(4): 341-352. doi: 10.3879/j.issn.1000-0887.2014.04.001
WU Feng, GAO Qiang, ZHONG Wan-xie. Iterative Symplectic Perturbation Method for the Dynamic Analysis of Rigid-Flexible Bodies Equations[J]. Applied Mathematics and Mechanics, 2014, 35(4): 341-352. doi: 10.3879/j.issn.1000-0887.2014.04.001
Citation: WU Feng, GAO Qiang, ZHONG Wan-xie. Iterative Symplectic Perturbation Method for the Dynamic Analysis of Rigid-Flexible Bodies Equations[J]. Applied Mathematics and Mechanics, 2014, 35(4): 341-352. doi: 10.3879/j.issn.1000-0887.2014.04.001

刚-柔体动力学方程的保辛摄动迭代法

doi: 10.3879/j.issn.1000-0887.2014.04.001
基金项目: 国家重点基础研究发展计划(973计划)(2009CB918501)
详细信息
    作者简介:

    吴锋(1985—),男,江苏靖江人,博士生(E-mail: wufeng_chn@163.com)

  • 中图分类号: O313.7

Iterative Symplectic Perturbation Method for the Dynamic Analysis of Rigid-Flexible Bodies Equations

Funds: The National Basic Research Program of China (973 Program)(2009CB918501)
  • 摘要: 针对刚-柔体动力学方程,提出保辛摄动迭代算法.该方法把刚-柔体动力学方程的低频运动和高频振动分开处理,用保辛摄动的思想来处理低、高频耦合作用,从而可以采用较大时间步长进行数值积分,即可给出满意的数值结果,很好地解决了刚性积分问题.数值算例表明该方法是可行的.
  • [1] 于清, 洪嘉振. 柔性多体系统动力学的若干热点问题[J]. 力学进展, 1999,29(2): 145-154.(YU Qing, HONG Jia-zhen. Some topics on flexible multibody system dynamics[J]. Advances in Mechanics,1999,29(2): 145-154.(in Chinese))
    [2] Newmark N M. A method of computation for structural dynamics[J]. ASCE Journal of the Engineering Mechanics Division,1959,85(3): 67-94.
    [3] Bathe K J, Wilson E L.Numerical Methods in Finite Element Analysis [M]. Englewood: Prentice-Hall, 1976.
    [4] Ascher U M, Petzold L R.Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations [M]. Beijing: Science Press, 2009.
    [5] 吴志桥. 非惯性系下柔性结构动力学研究[D]. 硕士学位论文. 长沙: 国防科学技术大学, 2004.(WU Zhi-qiao. Study on dynamics for flexible structure in non-inertial frame[D]. Master Thesis. Changsha: National University of Defense Technology, 2004.(in Chinese))
    [6] 臧永强. 求解多柔体系统动力方程的违约修正零空间法[D]. 硕士学位论文. 西安: 西安电子科技大学, 2009.(ZANG Yong-qiang. The violation correction null space method of dynamical equation of flexible multi-body systems[D]. Master Thesis. Xi’an: Xidian University, 2009.(in Chinese))
    [7] 付士慧, 王琪. 多体系统动力学方程违约修正的数值计算方法[J]. 计算力学学报, 2007,24(1): 44-49.(FU Shi-hui, WANG Qi. A numerical method for constraint stabilization of dynamic equations of multi-body systems[J].Chinese Journal of Computational Mechanics,2007,24(1): 44-49.(in Chinese))
    [8] 赵玉立, 吴子燕, 邓子辰. 带伸展柔性附件航天器系统动力响应的精细积分算法[J]. 机械科学与技术, 2002,21(2): 196-197, 201.(ZHAO Yu-li, WU Zi-yan, DENG Zi-chen. The precise integration method for calculating the dynamic behavior of spacecraft with extensional flexible appendages[J].Mechanical Science and Technology,2002,21(2): 196-197, 201.(in Chinese))
    [9] 张靖姝, 于洪洁, 洪嘉振. 非线性插值精细积分法在刚柔耦合弹簧摆中的应用[J]. 力学季刊, 2013,34(3): 415-422.(ZHANG Jing-shu, YU Hong-jie, HONG Jia-zhen. Nonlinear interpolation precise integration method in rigid-flexible coupling spring pendulum[J].Chinese Quarterly of Mechanics, 2013,34(3): 415-422.(in Chinese))
    [10] 钟万勰, 高强. 约束动力系统的分析结构力学积分[J]. 动力学与控制学报, 2006,4(3): 193-200.(ZHONG Wan-xie, GAO Qiang. Integration of constrained dynamical system via analytical structural mechanics[J].Journal of Dynamics and Control,2006,4(3): 193-200.(in Chinese))
    [11] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003.(WANG Xu-cheng.Finite Element Method [M]. Beijing: Tsinghua University Press, 2003.(in Chinese))
    [12] Hinch E J.Perturbation Methods [M]. Cambridge: Cambridge University Press, 1991.
    [13] 钟万勰, 孙雁. 三类保辛摄动及其数值比较[J]. 动力学与控制学报, 2005,3(2): 1-9.(ZHONG Wan-xie, SUN Yan. Numerical comparison for three different symplectic perturbation methods[J].Journal of Dynamics and Control,2005,3(2): 1-9.(in Chinese))
    [14] 钟万勰, 姚征. 时间有限元与保辛[J]. 机械强度, 2005,27(2): 178-183.(ZHONG Wan-xie, YAO Zheng. Time domain FEM and symplectic conservation[J].Journal of Mechanical Strength,2005,27(2): 178-183.(in Chinese))
    [15] 钟万勰, 孙雁. 小参数摄动法与保辛[J]. 动力学与控制学报, 2005,3(1): 1-6.(ZHONG Wan-xie, SUN Yan. Small parameter perturbation method and symplectic conservation[J].Journal of Dynamics and Control,2005,3(1): 1-6.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1192
  • HTML全文浏览量:  107
  • PDF下载量:  1045
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-25
  • 刊出日期:  2014-04-15

目录

    /

    返回文章
    返回