留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子力显微镜中等容液桥的毛细力分析

魏征 陈少勇 赵爽 孙岩

魏征, 陈少勇, 赵爽, 孙岩. 原子力显微镜中等容液桥的毛细力分析[J]. 应用数学和力学, 2014, 35(4): 364-376. doi: 10.3879/j.issn.1000-0887.2014.04.003
引用本文: 魏征, 陈少勇, 赵爽, 孙岩. 原子力显微镜中等容液桥的毛细力分析[J]. 应用数学和力学, 2014, 35(4): 364-376. doi: 10.3879/j.issn.1000-0887.2014.04.003
WEI Zheng, CHEN Shao-yong, ZHAO Shuang, SUN Yan. Capillary Force Analysis of Constant-Volume Liquid Bridges in Atomic Force Microscopes[J]. Applied Mathematics and Mechanics, 2014, 35(4): 364-376. doi: 10.3879/j.issn.1000-0887.2014.04.003
Citation: WEI Zheng, CHEN Shao-yong, ZHAO Shuang, SUN Yan. Capillary Force Analysis of Constant-Volume Liquid Bridges in Atomic Force Microscopes[J]. Applied Mathematics and Mechanics, 2014, 35(4): 364-376. doi: 10.3879/j.issn.1000-0887.2014.04.003

原子力显微镜中等容液桥的毛细力分析

doi: 10.3879/j.issn.1000-0887.2014.04.003
基金项目: 国家自然科学基金(11072024);国家留学基金(201208110350)
详细信息
    作者简介:

    魏征(1970—),男,安徽萧县人,副教授,博士(通讯作者. E-mail: weizheng@mail.buct.edu.cn)

  • 中图分类号: O647.6;O363.2

Capillary Force Analysis of Constant-Volume Liquid Bridges in Atomic Force Microscopes

Funds: The National Natural Science Foundation of China(11072024)
  • 摘要: 用表界面热力学方法和力学方法研究了原子力显微镜中等容液桥的毛细力和液桥的断裂能,对这两种方法进行了对比分析.对液桥分析中圆弧近似的适用性进行了讨论,对轻敲模式下的能量耗散进行了分析,指出液桥断裂引起的能量耗散是引起相位变化的主要因素,另外还指出了接触角滞后效应对毛细力和断裂能的影响.模型分析对原子力显微镜轻敲模式下成像机理的理解以及力曲线测量分析有一定的参考价值.
  • [1] Binnig G, Quate C F, Gerber C. Atomic force microscope[J].Physical Review Letters,1986,56(9): 930-933.
    [2] Gan Y. Atomic and subnanometer resolution in ambient conditions by atomic force microscopy[J].Surface Science Reports,2009,64(3): 99-121.
    [3] Weisenhorn A L, Hansma P K, Albrecht T R, Quate C F. Forces in atomic force microscopy in air and water[J].Applied Physics Letters,1989,54(26): 2651-2653.
    [4] Hornbaker D J, Albert R, Albert I, Barabsi A L, Schiffer P. What keeps sandcastles standing?[J].Nature,1997,387(19): 765.
    [5] Butt H J, Kappl M. Normal capillary force[J].Advances in Colloid and Interface Science,2009,146(1/2): 48-60.
    [6] Wei Z, Zhao Y P. Growth of liquid bridge in AFM[J].Journal of Physics D: Applied Physics,2007,40(14): 4368-4375.
    [7] Haines W B. Studies in the physical properties of soils—II: a note on the cohesion developed by capillary forces in an ideal soil[J].The Journal of Agricultural Science,1925,15(4): 529-535.
    [8] Fisher R A. On the capillary forces in an ideal soil[J].The Journal of Agricultural Science,1926,16(3): 492-505.
    [9] Orr F M, Scriven L E, Rivas A P. Pendular rings between solids: meniscus properties and capillary force[J].Fluid Mechanics,1975,67(4): 723-742.
    [10] Wei Z, Zhao Y P. Experimental investigation of the velocity effect on adhesion forces with an atomic force microscope[J].Chinese Physics Letters,2004,21(4): 616-619.
    [11] Israelachvili J N, Adams G E. Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0—100 nm[J].Faraday Discussions of the Chemical Society,1978,74(1): 975-1001.
    [12] Parker J L, Christenson H K, Ninham B W. Device for measuring the force and separation between two surfaces down to molecular separations[J].Review of Scientific Instruments,1989,60(10): 3135-3138.
    [13] Maeda N, Israelachvili J N, Kohonen M M. Evaporation and instabilities of microscopic capillary bridges[J].Procceding of the National Academy of Sciences of the United States of America,2003,100(3): 803-808.
    [14] Riedo E, Levy F, Brune H. Kinetics of capillary condensation in nanoscopic sliding friction[J].Physical Review Letters ,2002,88(18): 5505-5508.
    [15] Kohonen M M, Maeda N, Christenson H K. Kinetics of capillary condensation in a nanoscale pore[J].Physical Review Letters,1999,82(23): 4667-4670.
    [16] Sirghi L. Transport mechanisms in capillary condensation of water at a single-asperity nanoscopic contact[J].Langmuir,2012,28(5): 2558-2566.
    [17] Lambert P, Chau A, Delchambre A. Comparison between two capillary forces models[J].Langmuir,2008,24(7): 3157-3163.
    [18] WEI Zheng, HE Meng-fu, ZHAO Wen-bin, LI Yang. Thermodynamic analysis of liquid bridge for fixed volume in atomic force microscope[J].Science China: Physics Mechanics & Astronomy,2013,56(10): 1962-1969.
    [19] LIAN Guo-ping, Thornton C, Adams M J. A theoretical study of the liquid bridge forces between two rigid spherical bodies[J].Journal of Colloid and Interface Science,1993,161(1): 138-147.
    [20] Xiao X D, Qian L M. Investigation of humidity-dependent capillary force[J].Langmuir,2000,16(21): 8153-8158.
    [21] Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications[J].Surface Science Reports,2005,59(1/6): 1-152.
    [22] 赵亚溥. 表面与界面物理力学[M]. 北京: 科学出版社, 2012.(ZHAO Ya-pu.Physical Mechanics of Surfaces and Interfaces [M]. Beijing: Science Press, 2012.(in Chinese))
    [23] Adamson A W, Gast A P.Physical Chemistry of Surface [M]. 6th ed. New York: A Wiley-Interscience Publication, 1997.
    [24] de Gennes P G, Brochard-Wyart F, Quéré D.Capillary and Wetting Phenomena: Drops, Bubbles, Pearls, Waves [M]. New York: Springer, 2004.
    [25] Asay D B, Kim S H. Effects of adsorbed water layer structure on adhesion force of silicon oxide nanoasperity contact in humid ambient[J].Journal of Chemical Physics,2005,124(17): 4712-4715.
    [26] Pitois O, Chateau X. Small particle at a fluid interface: effect of contact angle hysteresis on force and work of detachment[J].Langmuir,2002,18(25): 9751-9756.
  • 加载中
计量
  • 文章访问数:  1418
  • HTML全文浏览量:  119
  • PDF下载量:  1097
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-20
  • 修回日期:  2014-03-10
  • 刊出日期:  2014-04-15

目录

    /

    返回文章
    返回