留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三氧化二铝液滴对心碰撞直接数值模拟

夏盛勇 胡春波

夏盛勇, 胡春波. 三氧化二铝液滴对心碰撞直接数值模拟[J]. 应用数学和力学, 2014, 35(4): 377-388. doi: 10.3879/j.issn.1000-0887.2014.04.004
引用本文: 夏盛勇, 胡春波. 三氧化二铝液滴对心碰撞直接数值模拟[J]. 应用数学和力学, 2014, 35(4): 377-388. doi: 10.3879/j.issn.1000-0887.2014.04.004
XIA Sheng-yong, HU Chun-bo. Direct Numerical Simulation of Head-on Binary Collision of Aluminum Oxide Droplets[J]. Applied Mathematics and Mechanics, 2014, 35(4): 377-388. doi: 10.3879/j.issn.1000-0887.2014.04.004
Citation: XIA Sheng-yong, HU Chun-bo. Direct Numerical Simulation of Head-on Binary Collision of Aluminum Oxide Droplets[J]. Applied Mathematics and Mechanics, 2014, 35(4): 377-388. doi: 10.3879/j.issn.1000-0887.2014.04.004

三氧化二铝液滴对心碰撞直接数值模拟

doi: 10.3879/j.issn.1000-0887.2014.04.004
基金项目: 国家自然科学基金(50976095)
详细信息
    作者简介:

    夏盛勇(1987—),男,江西人,博士生(通讯作者. E-mail: xiashengyong@126.com)

  • 中图分类号: O242.1;O35

Direct Numerical Simulation of Head-on Binary Collision of Aluminum Oxide Droplets

Funds: The National Natural Science Foundation of China(50976095)
  • 摘要: 为研究固体火箭发动机内三氧化二铝液滴碰撞的物理规律及结果预测模型,针对两个相同尺寸的三氧化二铝液滴对心碰撞,开展了直接数值模拟.首先进行了正十四烷液滴在氮气环境下的对心碰撞数值研究,数值与实验结果基本一致,验证了计算方法的可行性及准确性.针对三氧化二铝液滴开展了6 MPa压强下不同Weber数的对心碰撞数值研究,计算Weber数范围为10~200,Ohnesorge数为0.036 4;获得了反弹、大变形后聚合和自反分离3种结果类型,反弹与大变形后聚合的临界分离Weber数为26,大变形后聚合与自反分离的临界分离Weber数为44.根据临界Weber数对其他流体液滴碰撞模型进行修正,可以获得三氧化二铝液滴的碰撞模型.
  • [1] 赵志博, 刘佩进, 张少悦, 甘晓松. NEPE高能推进剂凝相燃烧产物的特性分析[J]. 推进技术, 2010,31(1): 69-73.(ZHAO Zhi-bo, LIU Pei-jin, ZHANG Shao-yue, GAN Xiao-song. Combustion peculiarity of condensed-products of NEPE propellant [J].Journal of Propulsion Technology,2010,31(1): 69-73.(in Chinese))
    [2] Paradis P-F, Ishikawa T. Surface tension and viscosity measurements of liquid and undercooled alumina by containerless techniques[J].Japanese Journal of Applied Physics,2005,44(7A): 5082-5085.
    [3] Laredo D, McCrorie II J D, Vaughn J K, Netzer D W. Motor and plume particle size measurements in solid propellant micromotors[J].Journal of Propulsion and Power,1994,10(3): 410-418.
    [4] Jeenu R, Pinumalla K, Deepak D. Size distribution of particles in combustion products of aluminized composite propellant[J].Journal of Propulsion and Power,2010,26(4): 715-723.
    [5] XIA Sheng-yong, HU Chun-bo. Experimental study of collision of liquid Al2O3/Al droplets[J].Journal of Propulsion and Power,2013,29(1): 95-103.
    [6] Averin V S, Arkhipov V A, Vasenin I M, Dyachenko N N, Trofimov V F. Effect of a sudden change in cross-sectional area of the solid rocket motor duct on coagulation of condensed particles[J].Combustion, Explosion, and Shock Waves,2003,39(3): 316-322.
    [7] 李强, 李江, 刘佩进, 何国强. 模型发动机内凝相颗粒碰撞的数值模拟[J]. 推进技术, 2008,29(1): 18-21.(LI Qiang, LI Jiang, LIU Pei-jin, HE Guo-qiang. Numerical simulation of particle collision and impingement for a model SRM[J].Journal of Propulsion Technology,2008,29(1): 18-21.(in Chinese))
    [8] Najjar F M, Ferry J P, Haselbacher A, Balachandar S. Simulations of solid-propellant rockets: effects of aluminum droplet size distribution[J].Journal of Spacecraft and Rockets,2006,43(6): 1258-1270.
    [9] Salita M. Use of water and mercury droplets to simulate Al2O3 collision /coalescence in rocket motors[J].Journal of Propulsion and Power,1991,7(4): 505-512.
    [10] Sabnis J S. Numerical simulation of distributed combustion in solid rocket motors with metalized propellant[J].Journal of Propulsion and Power,2003,19(1): 48-55.
    [11] Popinet S. Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries[J].Journal of Computational Physics,2003,190(2): 572-600.
    [12] Popinet S. An accurate adaptive solver for surface-tension-driven interfacial flows[J].Journal of Computational Physics,2009,228(16): 5838-5866.
    [13] Qian J, Law C K. Regimes of coalescence and separation in droplet collision[J].Journal of Fluid Mechanics,1997,331: 59-80.
    [14] Ashgriz N, Poo J Y. Coalescence and separation in binary collisions of liquid drops[J].Journal of Fluid Mechanics,1990,221: 183-204.
    [15] PAN Yu, Suga K. Numerical simulation of binary liquid droplet collision[J].Physics of Fluids,2005,17(8): 082105.
    [16] ZHANG Peng, Law C K. An analysis of head-on droplet collision with large deformation in gaseous medium[J].Physics of Fluids,2011,23(4): 042102.
    [17] Glorieux B, Millot F, Rifflet J-C, Coutures J-P. Density of superheated and undercooled liquid alumina by a contactless method[J].International Journal of Thermophysics,1999,20(4): 1085-1094.
    [18] Glorieux B, Millot F, Rifflet J-C. Surface tension of liquid alumina from contactless techniques[J].International Journal of Thermophysics,2002,23(5): 1249-1257.
    [19] Gotaas C, Havelka P, Jakobsen H A, Svendsen H F, Hase M, Roth N, Weigand B. Effect of viscosity on droplet-droplet collision outcome: experimental study and numerical comparison[J].Physics of Fluids,2007,19(10): 102106.
    [20] Munnannur A, Reitz R D. A new predictive model for fragmenting and non-fragmenting binary droplet collisions[J].International Journal of Multiphase Flow,2007,33(8): 873-896.
  • 加载中
计量
  • 文章访问数:  857
  • HTML全文浏览量:  30
  • PDF下载量:  880
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-06
  • 修回日期:  2014-01-18
  • 刊出日期:  2014-04-15

目录

    /

    返回文章
    返回