## 留言板

 引用本文: 孙春艳, 徐伟. 随机分数阶微分方程初值问题基于模拟方程法的数值求解[J]. 应用数学和力学, 2014, 35(10): 1092-1099.
SUN Chun-yan, XU Wei. An Analog Equation Method-Based Numerical Scheme for Initial Value Problems of Stochastic Fractional Differential Equations[J]. Applied Mathematics and Mechanics, 2014, 35(10): 1092-1099. doi: 10.3879/j.issn.1000-0887.2014.10.003
 Citation: SUN Chun-yan, XU Wei. An Analog Equation Method-Based Numerical Scheme for Initial Value Problems of Stochastic Fractional Differential Equations[J]. Applied Mathematics and Mechanics, 2014, 35(10): 1092-1099.

## 随机分数阶微分方程初值问题基于模拟方程法的数值求解

##### doi: 10.3879/j.issn.1000-0887.2014.10.003

###### 作者简介:孙春艳（1984—），女，山东威海人，博士生（通讯作者. E-mail: sunchunyan@mail.nwpu.edu.cn).
• 中图分类号: O322;O324

## An Analog Equation Method-Based Numerical Scheme for Initial Value Problems of Stochastic Fractional Differential Equations

Funds: The National Natural Science Foundation of China（11772233）
• 摘要: 基于模拟方程法，提出了一种求解随机分数阶微分方程初值问题的数值方法.考虑含两个分数阶导数项的微分方程，引入两个线性的、非耦合的随机模拟方程，利用它们解构原方程，借助Laplace变换及逆变换，得到方程解的积分表达式，同时建立起两个模拟方程之间的联系，结合初始状态，得到求解随机微分方程初值问题的数值迭代算法.作为特例，对于含两个分数阶导数项线性常微分方程的初值问题，给出了基于模拟方程法的数值解法的显式结果.该方法是稳定的，它的误差仅存在于积分近似时的截断误差和计算软件的舍入误差.应用实例说明了数值方法在确定和随机情形的有效性和准确性.
•  [1] Oldham K B, Spanier J.The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order[M]. New York: Academic Press, 1974. [2] Miller K S, Ross B.An Introduction to the Fractional Calculus and Fractional Differential Equations[M]. New York: John Wiley & Sons Inc, 1993. [3] Podlubny I.Fractional Differential Equations[M]. New York: Academic Press, 1999. [4] Samko S G, Kilbas A A, Marichev O I.Fractional Integrals and Derivatives[M]. New York: Gordon and Breach Science Publishers, 1993. [5] Mandelbrot B B.The Fractal Geometry of Nature[M]. New York: W H Freeman, 1982. [6] Bagley R L, Torvik P J. A theoretical basis for the application of fractional calculus to viscoelasticity[J].Journal of Rheology,1983,27(3): 201-210. [7] Bagley R L, Torvik P J. Fractional calculus—a different approach to the analysis of viscoelastically damped structures[J].AIAA Journal,1983,21(5): 741-748. [8] Bagley R L, Torvik P J. Fractional calculus in the transient analysis of viscoelastically damped structures[J].AIAA Journal,1985,23(6): 918-925. [9] Koeller R C. Applications of fractional calculus to the theory of viscoelasticity[J].Journal of Applied Mechanics-Transactions of the ASME,1984,51(2): 299-307. [10] Koeller R C, Wisconsin P. Polynomial operators, stieltjes convolution and fractional calculus in hereditary mechanics[J].Acta Mechanica,1986,58(3/4): 251-264. [11] Xu Y, Gu R C, Zhang H Q, Li D X. Chaos in diffusionless Lorenz system with a fractional order and its control[J].International Journal of Bifurcation and Chaos,2012,22(4). doi: 10.1142/S0218127412500885. [12] Xu Y, Li Y G, Liu D, Jia W T, Huang H. Responses of Duffing oscillator with fractional damping and random phase[J].Nonlinear Dynamics,2013,74(3): 745-753. [13] Xu Y,Wang H. Synchronization of fractional-order chaotic systems with Gaussian fluctuation by sliding mode control[J].Abstract and Applied Analysis,2013,2013. Article ID: 948782. [14] Gaul L, Klein P, Kempfle S. Impulse-response function of an oscillator with fractional derivative in damping description[J].Mechanics Research Communications,1989,16(5): 297-305. [15] Suarez L E,Shokooh A. An eigenvector expansion method for the solution of motion containing fractional derivatives[J].Journal of Applied Mechanics-Transactions of the ASME,1997,64(3): 629-635. [16] 李根国, 朱正佑, 程昌钧. 具有分数导数型本构关系的粘弹性柱的动力稳定性[J]. 应用数学和力学, 2001,22(3): 250-258.(LI Gen-guo, ZHU Zheng-you, CHENG Chang-jun. Dynamical stability of viscoelastic column with fractional derivative constitutive relation[J].Applied Mathematics and Mechanics,2001,22(3): 250-258.(in Chinese)) [17] Wahi P, Chatterjee A. Averaging oscillations with small fractional damping and delayed terms[J].Nonlinear Dynamics,2004,38(1/4): 3-22. [18] Diethelm K, Walz G. Numerical solution of fractional order differential equations by extrapolation[J].Numerical Algorithms,1997,16(3/4): 231-253. [19] Diethelm K, Ford N J, Freed A D. A predictor-corrector approach for the numerical solution of fractional differential equations[J].Nonlinear Dynamics,2002,29(1/4): 3-22. [20] Ford N J, Simpson C. The numerical solution of fractional differential equations: speed versus accuracy[J].Numerical Algorithms,2001,26(4): 333-346. [21] Cuesta E, Palencia C A. Fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces[J].Applied Numerical Mathematics,2003,45(2/3): 139-159. [22] Katsikadelis J T, Nerantzaki M S. The boundary element method for nonlinear problems[J].Engineering Analysis of Boundary Elements,1999,23(5/6): 365-373. [23] Katsikadelis J T.The analog equation method: a boundary-only integral equation method for nonlinear static and dynamic problems in general bodies[J].Theoretical and Applied Mechanics,2002(27): 13-38. [24] Katsikadelis J T. Numerical solution of multi-term fractional differential equations[J].Journal of Applied Mathematics and Mechanics,2009,89(7): 593-608. [25] 孙春艳, 徐伟. 分数阶导数阻尼下非线性随机振动结构响应的功率谱密度估计[J]. 应用力学学报,2013,30(3): 401-405.(SUN Chun-yan, XU Wei. Response power spectral density estimate of a fractionally damped nonlinear oscillator[J].Chinese Journal of Applied Mechanics,2013,30(3): 401-405.(in Chinese))

##### 计量
• 文章访问数:  1604
• HTML全文浏览量:  60
• PDF下载量:  2214
• 被引次数: 0
##### 出版历程
• 收稿日期:  2014-05-19
• 修回日期:  2014-09-08
• 刊出日期:  2014-10-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈