留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维气液两相漂移模型的AUSMV算法研究

徐朝阳 孟英峰 魏纳 李皋 万里平

徐朝阳, 孟英峰, 魏纳, 李皋, 万里平. 一维气液两相漂移模型的AUSMV算法研究[J]. 应用数学和力学, 2014, 35(12): 1373-1382. doi: 10.3879/j.issn.1000-0887.2014.12.009
引用本文: 徐朝阳, 孟英峰, 魏纳, 李皋, 万里平. 一维气液两相漂移模型的AUSMV算法研究[J]. 应用数学和力学, 2014, 35(12): 1373-1382. doi: 10.3879/j.issn.1000-0887.2014.12.009
XU Chao-yang, MENG Ying-feng, WEI Na, LI Gao, WAN Li-ping. Research on the AUSMV Scheme for 1D Gas-Liquid Two-Phase Flow Drift Flux Models[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1373-1382. doi: 10.3879/j.issn.1000-0887.2014.12.009
Citation: XU Chao-yang, MENG Ying-feng, WEI Na, LI Gao, WAN Li-ping. Research on the AUSMV Scheme for 1D Gas-Liquid Two-Phase Flow Drift Flux Models[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1373-1382. doi: 10.3879/j.issn.1000-0887.2014.12.009

一维气液两相漂移模型的AUSMV算法研究

doi: 10.3879/j.issn.1000-0887.2014.12.009
基金项目: 国家科技重大专项(2011ZX05021-003);国家自然科学基金(51104124)
详细信息
    作者简介:

    徐朝阳(1985—),男,四川仪陇人,博士生(通讯作者. E-mail: 04011xzy@sina.com);孟英峰(1954—),男,河北保定人,教授,博士生导师(E-mail: cwctmyf@vip.sina.com).

  • 中图分类号: O359+.1; O241.82

Research on the AUSMV Scheme for 1D Gas-Liquid Two-Phase Flow Drift Flux Models

Funds: The National Science and Technology Major Project of China (2011ZX05021-003); The National Natural Science Foundation of China (51104124)
  • 摘要: 将AUSMV(advection upstream splitting method V)格式从计算气体动力学问题扩展至一维等温瞬态气液两相管流.阐述了采用AUSMV格式构建气液两相漂移模型数值通量的方法及边界单元的处理方法.采用RungeKutta方法与经典的保单调MUSCL(monotone upstreamcentred schemes for conservation laws)方法结合Van Leer限制器,构建具有二阶时间和空间精度的数值计算方法.计算经典Zuber-Findlay激波管问题和复杂漂移关系变质量流动问题并与可靠的参考结果进行了对比.分析表明:AUSMV格式应用于气液两相流动漂移模型时计算效率高、精度高、耗散效应和色散效应小,低流速条件下能够精确地描述间断.
  • [1] Delhaye J M. Equations fondamentales des ecoulements diphasiques, part 1 and 2[R]. Report CEA-R-3429, France, 1968.
    [2] Zuber N, Findlay J A. Average volumetric concentration in two-phase flow systems[J]. Journal of Heat Transfer,1965,87(4): 453-468.
    [3] Large A C V M, Fjelde K K, Time R W .Underbalanced drilling dynamics: two-phase flow modeling and experiments[J]. SPE Journal,2003,8(1): 61-70.
    [4] Abbaspour M, Chapman K S, Glasgow L A. Transient modeling of non-isothermal, dispersed two-phase flow in natural gas pipelines[J]. Applied Mathematical Modelling,2010,34(2): 495-507.
    [5] Benzoni-Gavage S. Analyse numérique des modèles hydrodynamiques d’écoulements diphasique instationnaires dans les réseaux de production pétroliere[D]. PhD Thesis. France: ENS Lyon, 1991.
    [6] Théron B. coulements diphasique instationnaires en conduite horizontale[D]. PhD Thesis. France: INP Toulouse, 1989.
    [7] Barnea D. A unified model for predicting flow pattern transitions for the whole range of pipe inclinations[J]. International Journal of Multiphase Flow,1987,13(1): 1-12.
    [8] Liou Meng-Sing, Steffen C J. A new flux splitting scheme[J]. Journal of Computational Physics,1993,107(1): 23-39.
    [9] Liou Meng-Sing. A sequel to AUSM: AUSM+[J]. Journal of Computational Physics,1996,129(2): 364-382.
    [10] Wada Y, Liou Meng-Sing. An accurate and robust flux splitting scheme for shock and contact discontinuities[J]. SIAM Journal on Computing,1997,18(3): 633-657.
    [11] Liou Meng-Sing. A sequel to AUSM—part II: AUSM+-up for all speeds[J]. Journal of Computational Physics,2006,214(1): 137-170.
    [12] 阎超, 于剑, 徐晶磊, 范晶晶, 高瑞泽, 姜振华. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011,41(5): 562-588.(YAN Chao, YU Jian, XU Jing-lei, FANG Jing-jing, GAO Rui-ze, JIANG Zhen-hua. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics,2011,41(5): 562-588.(in Chinese))
    [13] Edwards J R, Franklin R K, Liou Meng-Sing. Low-diffusion flux-splitting methods for real fluid flows with phase transitions[J]. AIAA Journal,2000,38(9): 1624-1633.
    [14] NIU Yang-yao. Simple conservative flux splitting for multi-component flow calculations[J]. Numerical Heat Transfer, Part B,2000,38(2): 203-222.
    [15] NIU Yang-yao. Advection upwinding splitting method to solve a compressible two-fluid model[J]. International Journal of Numerical Methods in Fluids,2001,36(3): 351-371.
    [16] Paillère H, Corre C, García Cascales J R. On the extension of the AUSM+ scheme to compressible two-fluid models[J]. Computers and Fluids,2003,32(16): 891-916.
    [17] Evje S, Fjelde K K. Hybrid flux-splitting schemes for a two-phase flow model[J]. Journal of Computational Physics,2002,175(2): 674-701.
    [18] Evje S, Fjelde K K. On a rough AUSM scheme for a one-dimensional two-phase model[J]. Computer and Fluids,2003,32(10):1497-1530.
    [19] Van Leer B. Towards the ultimate conservative difference scheme—V: a second-order sequel to Godunov’s method[J]. Journal of Computational Physics,1979,32(1): 101-136.
    [20] 张德良. 计算流体力学教程[M]. 北京: 高等教育出版社, 2010: 180-194.(ZHANG De-liang. A Course in Computational Fluid Dynamics [M]. Beijing: Higher Education Press, 2010: 180-194.(in Chinese))
    [21] Evje S, Fltten T. Hybrid flux-splitting schemes for a common two-fluid flow model[J].Journal of Computational Physics,2003,192(1): 175-210.
    [22] Flatten T, Munkejord S T. The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model[J]. ESAIM: Mathematical Modelling and Numerical Analysis,2006,40(4): 735-764.
    [23] Munkejord S T, Evje S, Flatten T. The multi-stage centred-scheme approach applied to a drift-flux two-phase flow model[J]. International Journal for Numerical Methods in Fluids,2006,52(6): 679-705.
  • 加载中
计量
  • 文章访问数:  1044
  • HTML全文浏览量:  47
  • PDF下载量:  861
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-23
  • 修回日期:  2014-09-22
  • 刊出日期:  2014-12-15

目录

    /

    返回文章
    返回