留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微通道中电渗流及微混合的离子浓度效应

杨大勇 王阳

杨大勇, 王阳. 微通道中电渗流及微混合的离子浓度效应[J]. 应用数学和力学, 2015, 36(9): 981-989. doi: 10.3879/j.issn.1000-0887.2015.09.009
引用本文: 杨大勇, 王阳. 微通道中电渗流及微混合的离子浓度效应[J]. 应用数学和力学, 2015, 36(9): 981-989. doi: 10.3879/j.issn.1000-0887.2015.09.009
YANG Da-yong, WANG Yang. Effects of Ion Concentration on Electroosmotic Flow and Micromixing in Microchannels[J]. Applied Mathematics and Mechanics, 2015, 36(9): 981-989. doi: 10.3879/j.issn.1000-0887.2015.09.009
Citation: YANG Da-yong, WANG Yang. Effects of Ion Concentration on Electroosmotic Flow and Micromixing in Microchannels[J]. Applied Mathematics and Mechanics, 2015, 36(9): 981-989. doi: 10.3879/j.issn.1000-0887.2015.09.009

微通道中电渗流及微混合的离子浓度效应

doi: 10.3879/j.issn.1000-0887.2015.09.009
基金项目: 国家自然科学基金(11302095)
详细信息
    作者简介:

    杨大勇(1978—),男,安徽人,副教授,博士(通讯作者. E-mail: dayongyang@ncu.edu.cn);王阳(1988—),男,江西人,硕士生(E-mail: w573235417@qq.com).

  • 中图分类号: O351

Effects of Ion Concentration on Electroosmotic Flow and Micromixing in Microchannels

Funds: The National Natural Science Foundation of China(11302095)
  • 摘要: 电渗流广泛应用于微流控芯片中的流体输运与混合.该文提出了一种离子浓度梯度对电渗流及微混合产生影响的变量模型,采用有限元分析方法对微通道中电渗流及微混合的离子浓度效应进行了数值模拟,分别讨论了zeta电势、介电常数等对微通道内流场和浓度场的影响规律,定量分析了微混合效率.结果表明,当zeta电势和介电常数随浓度变化时,微通道中流场分布不均匀,离子分布不对称.当溶液浓度趋近1 mol/L时,溶液基本无法进入微通道.微混合效率随溶液间浓度差的增大而减小,而且浓度差越大越能在较短距离内到达充分混合.
  • [1] Tian F, Li B, Kwok D Y. Tradeoff between mixing and transport for electroosmotic flow in heterogeneous microchannels with nonuniform surface potentials[J]. Langmuir,2005,21(3): 1126-1131.
    [2] Dutta P, Beskok A. Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite Debye layer effects[J]. Analytical Chemistry,2001,73(9): 1979-1986.
    [3] Hessel V, Lwe H, Schnfeld F. Micromixers—a review on passive and active mixing principles[J]. Chemical Engineering Science,2005,60(8/9): 2479-2501.
    [4] Capretto L, CHENG Wei, Hill M, ZHANG Xun-li. Micromixing within microfluidic devices[C]//LIN Bing-cheng, ed. Microfluidics: Topics in Current Chemistry,304. Berlin, Heidelberg: Springer-Verlag, 2011: 27-68.
    [5] Jeon W, Shin C B. Design and simulation of passive mixing in microfluidic systems with geometric variations[J]. Chemical Engineering Journal,2009,152(2/3): 575-582.
    [6] ZHANG Fang, Daghighi Y, LI Dong-qing. Control of flow rate and concentration in microchannel branches by induced-charge electrokinetic flow[J]. Journal of Colloid and Interface Science,2011,364(2): 588-593.
    [7] Nayak A K. Analysis of mixing for electroosmotic flow in micro/nano channels with heterogeneous surface potential[J]. International Journal of Heat and Mass Transfer,2014,75: 135-144.
    [8] WANG Jin-ku, WANG Mo-ran, LI Zhi-xin. Lattice Boltzmann simulations of mixing enhancement by the electro-osmotic flow in microchannels[J]. Modern Physics Letters B,2005,19(28/29): 1515-1518.
    [9] WANG Jin-ku, WANG Mo-ran, LI Zhi-xin. Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels[J]. Journal of Colloid and Interface Science,2006,296(2): 729-736.
    [10] Alizadeh A, Wang J K, Pooyan S, Mirbozorgi S A, Wangd M. Numerical study of active control of mixing in electro-osmotic flows by temperature difference using lattice Boltzmann methods[J]. Journal of Colloid and Interface Science,2013,407: 546-555.
    [11] Alizadeh A, Zhang L, Wang M. Mixing enhancement of low-Reynolds electro-osmotic flows in microchannels with temperature-patterned walls[J]. Journal of Colloid and Interface Science,2014,431: 50-63.
    [12] Saville D A. Electrohydrodynamics: the Taylor-Melcher leaky dielectric model[J]. Annual Review of Fluid Mechanics,1997,29(1): 27-64.
    [13] Kang K H, Park J, Kang I S, Huh K Y. Initial growth of electrohydrodynamic instability of two-layered miscible fluids in T-shaped microchannel[J]. International Journal of Heat and Mass Transfer,2006,49(23/24): 4577-4583.
    [14] LIN Hao, Storey B D, Oddy M H, CHEN Chun-hua, Santiago J G. Instability of electrokinetic microchannel flows with conductivity gradients[J]. Physics of Fluids,2004,16(6): 1922-1935.
    [15] Masliyah J H, Bhattacharjee S. Electrokinetic and Colloid Transport Phenomena [M]. John Wiley & Sons, 2006.
    [16] Peyman A, Gabriel C, Grant E H. Complex permittivity of sodium chloride solutions at microwave frequencies[J]. Bioelectromagnetics,2007,28(4): 264-274.
    [17] Kirby B J, Hasselbrink Jr E F. Zeta potential of microfluidic substrates—1: theory, experimental techniques, and effects on separations[J]. Electrophoresis,2004,25(2): 187-202.
    [18] Revil A, Pezard P A, Glover P W J. Streaming potential in porous media—1: theory of the zeta potential[J]. Journal of Geophysical Research: Solid Earth,1999,104(B9): 20021-20031.
    [19] GU Yong-an, LI Dong-qing. The ζ-potential of glass surface in contact with aqueous solutions[J]. Journal of Colloid and Interface Science,2000,226(2): 328-339.
  • 加载中
计量
  • 文章访问数:  917
  • HTML全文浏览量:  29
  • PDF下载量:  1318
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-15
  • 修回日期:  2015-07-12
  • 刊出日期:  2015-09-15

目录

    /

    返回文章
    返回