## 留言板

 引用本文: 吴锋, 钟万勰. 浅水问题的约束Hamilton变分原理及祖冲之类保辛算法[J]. 应用数学和力学, 2016, 37(1): 1-13.
WU Feng, ZHONG Wan-xie. The Constrained Hamilton Variational Principle for Shallow Water Problems and the Zu-Type Symplectic Algorithm[J]. Applied Mathematics and Mechanics, 2016, 37(1): 1-13. doi: 10.3879/j.issn.1000-0887.2016.01.001
 Citation: WU Feng, ZHONG Wan-xie. The Constrained Hamilton Variational Principle for Shallow Water Problems and the Zu-Type Symplectic Algorithm[J]. Applied Mathematics and Mechanics, 2016, 37(1): 1-13.

• 中图分类号: O352

## The Constrained Hamilton Variational Principle for Shallow Water Problems and the Zu-Type Symplectic Algorithm

Funds: The National Natural Science Foundation of China(General Program)（11472067）
• 摘要: 针对浅水流问题，将不可压缩条件作为约束处理，提出一种约束Hamilton变分原理，并利用该变分原理，推出一种基于位移和压强的浅水方程（SWE-DP）.针对SWE-DP，构造了一种结合有限元和祖冲之类算法的混合数值方法.通过数值算例，将SWE-DP与两个现有的浅水方程进行了数值比较，从而验证了SWE-DP的可靠性，并验证了针对SWE-DP构造的数值算法的正确性.此外，数值算例还显示出祖冲之类算法在对浅水波进行长时间仿真时，具有很好的表现.
•  [1] 兰姆 H. 理论流体动力学[M]. 游镇雄, 牛家玉, 译. 北京: 科学出版社, 1990.(Lamb H.Hydrodynamics[M]. YOU Zhen-xiong, NIU Jia-yu, transl. Beijing: Science Press, 1990.(Chinese version)) [2] Stoker J J.Water Waves: The Mathematical Theory With Applications [M]. New York: Interscience Publishers Ltd, 1957. [3] Vreugdenhil C B.Numerical Methods for Shallow-Water Flow [M]. Netherlands: Springer, 1994. [4] Kernkamp H W J, Van Dam A, Stelling G S, de Goede E D. Efficient scheme for the shallow water equations on unstructured grids with application to the continental shelf[J].Ocean Dynamics,2011,61(8): 1175-1188. [5] LIU Hai-fei, WANG Hong-da, LIU Shu, HU Chang-wei, DING Yu, ZHANG Jie. Lattice Boltzmann method for the Saint-Venant equations[J].Journal of Hydrology,2015,524: 411-416. [6] Chalfen M, Niemiec A. Analytical and numerical-solution of Saint-Venant equations[J].Journal of Hydrology,1986,86(1/2): 1-13. [7] Remoissenet M.Waves Called Solitons: Concepts and Experiments [M]. Berlin: Springer, 1996. [8] 钟万勰. 应用力学的辛数学方法[M]. 北京: 高等教育出版社, 2006.(ZHONG Wang-xie.Symplectic Solution Methodology in Applied Mechanics [M]. Beijing: Higher Education Press, 2006.(in Chinese)) [9] FENG Kang, QIN Meng-zhao.Symplectic Geometric Algorithms for Hamiltonian Systems [M]. Heidelberg, Berlin: Springer, 2010. [10] 钟万勰, 陈晓辉. 浅水波的位移法求解[J]. 水动力学研究与进展(A辑), 2006,21(4): 486-493.(ZHONG Wan-xie, CHEN Xiao-hui. Solving shallow water waves with the displacement method[J].Journal of Hydrodynamics(Ser A),2006,21(4): 486-493.(in Chinese)) [11] 钟万勰, 姚征. 位移法浅水孤立波[J]. 大连理工大学学报, 2006,46(1): 151-156.(ZHONG Wan-xie, YAO Zheng. Shallow water solitary waves based on displacement method[J].Journal of Dalian University of Technology,2006,46(1): 151-156.(in Chinese)) [12] 钟万勰, 高强. 约束动力系统的分析结构力学积分[J]. 动力学与控制学报, 2006,4(3): 193-200.(ZHONG Wan-xie, GAO Qiang. Integration of constrained dynamical system via analytical structural mechanics[J].Journal of Dynamics and Control,2006，〖STHZ〗4(3): 193-200.(in Chinese)) [13] 钟万勰, 高强, 彭海军. 经典力学辛讲[M]. 大连: 大连理工大学出版社, 2013.(ZHONG Wan-xie, GAO Qiang, PENG Hai-jun.Classical Mechanics—Its Symplectic Description[M]. Dalian: Dalian University of Technology Press, 2013.(in Chinese)) [14] 吴锋, 钟万勰. 基于祖冲之类方法具有保辛性[J]. 计算力学学报, 2015,32(4): 447-450.(WU Feng, ZHONG Wan-xie. The Zu-type method is symplectic[J].Chinese Journal of Computational Mechanics,2015,32(4): 447-450.(in Chinese))

##### 计量
• 文章访问数:  960
• HTML全文浏览量:  14
• PDF下载量:  667
• 被引次数: 0
##### 出版历程
• 收稿日期:  2015-09-30
• 修回日期:  2015-12-01
• 刊出日期:  2016-01-16

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈