## 留言板

 引用本文: 李贝贝, 严祯荣, 陈建, 徐洪涛, 杨茉. 充满多孔介质的方腔内双扩散自然对流格子Boltzmann模拟[J]. 应用数学和力学, 2016, 37(2): 184-194.
LI Bei-bei, YAN Zhen-rong, CHEN Jian, XU Hong-tao, YANG Mo. Lattice Boltzmann Simulation of Double Diffusive Natural Convection in a Square Enclosure Filled With Porous Medium[J]. Applied Mathematics and Mechanics, 2016, 37(2): 184-194. doi: 10.3879/j.issn.1000-0887.2016.02.007
 Citation: LI Bei-bei, YAN Zhen-rong, CHEN Jian, XU Hong-tao, YANG Mo. Lattice Boltzmann Simulation of Double Diffusive Natural Convection in a Square Enclosure Filled With Porous Medium[J]. Applied Mathematics and Mechanics, 2016, 37(2): 184-194.

• 中图分类号: TK124

## Lattice Boltzmann Simulation of Double Diffusive Natural Convection in a Square Enclosure Filled With Porous Medium

Funds: The National Natural Science Foundation of China(51276117)
• 摘要: 采用格子Boltzmann方法，对4个壁面均为低温、低浓度，内置高浓度发热圆的充满均匀多孔介质的方腔内双扩散自然对流现象进行了数值模拟研究.分析了Darcy(达西)数Da(10-4Da≤10-2)和浮升力比B(-5.0≤B≤5.0)对内部发热圆表面平均Nusselt(努赛尔)数Nuav和平均Sherwood(舍伍德)数Shav的影响.模拟结果表明：除B=-1.0时，NuavShavDa的增加而增大；当-5.0＜B＜5.0，在Da=10-4时，NuavShav几乎不受B变化的影响；在Da=10-3Da=10-2时，NuavShavB的增加先减小后增大，在B=-1.0时取得最小值
•  [1] 王丽. 部分填充多孔介质复合腔体内流体流动及传热传质的研究[D]. 硕士学位论文. 山东: 山东建筑大学, 2010.（WANG Li. Convective heat and mass transfer in a complex cavity partially filled with porous medium[D]. Master Thesis. Shandong: Shandong Jianzhu University, 2010.（in Chinese）） [2] Chamkha A J, Al-Naser H. Double-diffusive convection in an inclined porous enclosure with opposing temperature and concentration gradients[J].International Journal of Thermal Sciences,2001,40(3): 227-244. [3] 刘芳, 陈宝明. 多孔介质对室内有机挥发物扩散的影响[J]. 山东建筑大学学报, 2012,27(2): 160-163.(LIU Fang, CHEN Bao-ming. Influence of porous media on diffusion of VOCs in room[J].Journal of Shandong Jianzhu University,2012,27(2): 160-163.(in Chinese)) [4] Jena S K, Mahapatra S K, Sarkar A. Double diffusive buoyancy opposed natural convection in a porous cavity having partially active vertical walls[J].International Journal of Heat and Mass Transfer,2013,62: 805-817. [5] GUO Zhao-li, Zhao T S. Lattice Boltzmann simulation of natural convection with temperature-dependent viscosity in a porous cavity[J].Progress in Computational Fluid Dynamics,2005,5(1/2): 110-117. [6] Haghshenas A, Rafati Nasr M, Rahimian M H. Numerical simulation of natural convection in an open-ended square cavity filled with porous medium by lattice Boltzmann method[J].International Communications in Heat and Mass Transfer,2010,37(10): 1513-1519. [7] Djebali R, ElGanaoui M, Naffouti T. A 2D lattice Boltzmann full analysis of MHD convective heat transfer in saturated porous square enclosure[J].Computer Modeling in Engineering and Sciences,2012,84(6): 499-527. [8] WANG Liang, MI Jian-chun, GUO Zhao-li. A modified lattice Bhatnagar-Gross-Krook model for convection heat transfer in porous media[J].International Journal of Heat and Mass Transfer,2016,94: 267-291. [9] 赵凯, 宣益民, 李强. 基于格子Boltzmann方法的复杂多孔介质内双扩散效应的对流传热传质机理研究[J]. 科学通报, 2010,55(1): 94-102.(ZHAO Kai, XUAN Yi-ming, LI Qiang. Investigation on the mechanism of convective heat and mass transfer with double diffusive effect inside a complex porous medium using lattice Boltzmann method[J].Chinese Science Bulletin,2010,55(1): 94-102.(in Chinese)) [10] 马强, 陈俊, 陈振乾. 分形多孔介质传热传质过程的格子Boltzmann模拟[J]. 化工学报, 2014,65(S1): 180-187.(MA Qiang, CHEN Jun, CHEN Zhen-qian. Lattice Boltzmann simulation for heat and mass transfer in fractal porous medium[J].CIESC Journal,2014,65(S1): 180-187.(in Chinese)) [11] Yoshino M, Inamuro T. Lattice Boltzmann simulations for flow and heat/mass transfer problems in a three-dimensional porous structure[J].International Journal for Numerical Methods in Fluids,2003,43(2): 183-198. [12] Gray D D, Giorgini A. The validity of the Boussinesq approximation for liquids and gases[J].International Journal of Heat and Mass Transfer,1976,19(5): 545-551. [13] Nield D A, Bejan A.Convection in Porous Media [M]. 2nd ed. New York: Springer, 1999. [14] Martys N S. Improved approximation of the Brinkmann equation using a lattice Boltzmann method[J].Physics of Fluids,2001,13(6): 1807-1810. [15] Bouzidi M, Firdaouss M, Lallem P. Momentum transfer of a Boltzmann-lattice fluid with boundaries[J].Physics of Fluids,2001,13(11): 3452-3459. [16] GUO Zhao-li, ZHENG Chu-guang, SHI Bao-chang. Non-equilibrium extrapolation method for velocity and boundary conditions in the lattice Boltzmann method[J].Chinese Physics,2002,11(4): 366-374.

##### 计量
• 文章访问数:  755
• HTML全文浏览量:  12
• PDF下载量:  649
• 被引次数: 0
##### 出版历程
• 收稿日期:  2015-07-28
• 修回日期:  2015-09-06
• 刊出日期:  2016-02-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈