留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑双拉耦合的复合材料编织物非正交本构模型

张必超 彭雄奇 黄小双

张必超, 彭雄奇, 黄小双. 考虑双拉耦合的复合材料编织物非正交本构模型[J]. 应用数学和力学, 2016, 37(3): 227-234. doi: 10.3879/j.issn.1000-0887.2016.03.001
引用本文: 张必超, 彭雄奇, 黄小双. 考虑双拉耦合的复合材料编织物非正交本构模型[J]. 应用数学和力学, 2016, 37(3): 227-234. doi: 10.3879/j.issn.1000-0887.2016.03.001
ZHANG Bi-chao, PENG Xiong-qi, HUANG Xiao-shuang. A Nonorthogonal Constitutive Model for Woven Composites Involving Biaxial Tension Coupling[J]. Applied Mathematics and Mechanics, 2016, 37(3): 227-234. doi: 10.3879/j.issn.1000-0887.2016.03.001
Citation: ZHANG Bi-chao, PENG Xiong-qi, HUANG Xiao-shuang. A Nonorthogonal Constitutive Model for Woven Composites Involving Biaxial Tension Coupling[J]. Applied Mathematics and Mechanics, 2016, 37(3): 227-234. doi: 10.3879/j.issn.1000-0887.2016.03.001

考虑双拉耦合的复合材料编织物非正交本构模型

doi: 10.3879/j.issn.1000-0887.2016.03.001
基金项目: 国家自然科学基金(11172171);高校博士点专项科研基金(20130073110054)
详细信息
    作者简介:

    张必超(1991—),男,硕士生(E-mail: zhangbc0413@163.com);彭雄奇(1970—),男,教授,博士生导师(通讯作者. E-mail: xqpeng@sjtu.edu.cn).

  • 中图分类号: TB332

A Nonorthogonal Constitutive Model for Woven Composites Involving Biaxial Tension Coupling

Funds: The National Natural Science Foundation of China(11172171)
  • 摘要: 基于连续介质力学理论,将复合材料编织物的双轴拉伸效应引入到前期提出的非正交本构模型中,提出了一种考虑双拉耦合的复合材料编织物非正交本构模型.给出了模型参数的确定方法,并通过拟合单轴拉伸、不等比双轴拉伸和偏轴拉伸实验数据,得到了本构模型参数.利用该模型对双轴拉伸和双球冲压实验进行了有限元模拟,并将模拟结果和实验结果进行对比,验证了所提出本构模型的可靠性,该模型能更好地表征复合材料编织物在成形过程中由于大变形所引起的非线性各向异性力学行为.这一本构模型具有结果精确、参数容易确定的优点,为编织复合材料成形的数值模拟和成形工艺优化奠定了理论基础.
  • [1] Gereke T, Dbrich O, Hübner M, Cherif C. Experimental and computational composite textile reinforcement forming: a review[J]. Composites Part A: Applied Science and Manufacturing,2013,46: 1-10.
    [2] Chen Q Q, Xu C T, Boisse P, Saouab A, Park C H. Forming simulation of automotive part in woven composite material[C]//Proceedings of the FISITA 2012 World Automotive Congress.Berlin, Heidelberg: Springer, 2013: 3-10.
    [3] Ferraris S, Perero S, Miola M, Vernè E, Rosiello A, Ferrazzo V, Valletta G, Sanchez J, Ohrlander M, Tjrnhammar S, Fokine M, Laurell F, Blomberg E, Skoglund S, Odnevall Wallinder I, Ferraris M. Chemical, mechanical and antibacterial properties of silver nanocluster/silica composite coated textiles for safety systems and aerospace applications[J]. Applied Surface Science,2014,317: 131-139.
    [4] YIN Hong-ling, PENG Xiong-qi, DU Tong-liang, GUO Zao-yang. Draping of plain woven carbon fabrics over a double-curvature mold[J]. Composites Science and Technology,2014,92: 64-69.
    [5] PENG Xiong-qi, Rehman Z U. Textile composite double dome stamping simulation using a non-orthogonal constitutive model[J]. Composites Science and Technology,2011,71(8): 1075-1081.
    [6] PENG Xiong-qi, DING Fang-fang. Validation of a non-orthogonal constitutive model for woven composite fabrics via hemispherical stamping simulation[J]. Composites Part A: Applied Science and Manufacturing,2011,42(4): 400-407.
    [7] Lim T-C, Ramakrishna S. Modelling of composite sheet forming: a review[J]. Composites Part A: Applied Science and Manufacturing,2002,33(4): 515-537.
    [8] Boisse P, Hamila N, Vidal-Sallé E, Dumont F. Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses[J]. Composites Science and Technology,2011,71(5): 683-692.
    [9] PENG Xiong-qi, GUO Zao-yang, DU Tong-liang, Yu W R. A simple anisotropic hyperelastic constitutive model for textile fabrics with application to forming simulation[J]. Composites Part B: Engineering,2013,52: 275-281.
    [10] Hivet G, Boisse P. Consistent mesoscopic mechanical behaviour model for woven composite reinforcements in biaxial tension[J]. Composites Part B: Engineering,2008,39(2): 345-361.
    [11] Lee W, Cao J, Badel P, Boisse P. Non-orthogonal constitutive model for woven composites incorporating tensile effect on shear behavior[J]. International Journal of Material Forming,2008,1(S1): 891-894.
    [12] Peng X Q, Cao J. A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics[J]. Composites Part A: Applied Science and Manufacturing,2005,36(6): 859-874.
    [13] Dixit A, Mali H S. Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: a review[J]. Mechanics of Composite Materials,2013,49(1): 1-20.
    [14] Buet-Gautier K, Boisse P. Experimental analysis and modeling of biaxial mechanical behavior of woven composite reinforcements[J]. Experimental Mechanics,2001,41(3): 260-269.
    [15] Boisse P, Borr M, Buet K,Cherouat A. Finite element simulations of textile composite forming including the biaxial fabric behaviour[J].Composites Part B: Engineering,1997,28(4): 453-464.
    [16] Gasser A, Boisse P, Hanklar S. Mechanical behaviour of dry fabric reinforcements. 3D simulations versus biaxial tests[J]. Computational Materials Science,2000,17(1): 7-20.
    [17] Boisse P, Gasser A, Hivet G. Analyses of fabric tensile behaviour: determination of the biaxial tension-strain surfaces and their use in forming simulations[J]. Composites Part A: Applied Science and Manufacturing,2001,32(10): 1395-1414.
    [18] Woven Composites Benchmark Forum[EB/OL].[2005.11.09]. http://www.wovencomposites.org.
    [19] Khan M A, Mabrouki T, Vidal-Sallé E, Boisse P. Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark[J]. Journal of Materials Processing Technology,2010,210(2): 378-388.
  • 加载中
计量
  • 文章访问数:  991
  • HTML全文浏览量:  61
  • PDF下载量:  807
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-17
  • 修回日期:  2015-12-01
  • 刊出日期:  2016-03-15

目录

    /

    返回文章
    返回