留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多层简化应变梯度Timoshenko梁的变分原理分析

徐晓建 邓子辰

徐晓建, 邓子辰. 多层简化应变梯度Timoshenko梁的变分原理分析[J]. 应用数学和力学, 2016, 37(3): 235-244. doi: 10.3879/j.issn.1000-0887.2016.03.002
引用本文: 徐晓建, 邓子辰. 多层简化应变梯度Timoshenko梁的变分原理分析[J]. 应用数学和力学, 2016, 37(3): 235-244. doi: 10.3879/j.issn.1000-0887.2016.03.002
XU Xiao-jian, DENG Zi-chen. The Variational Principle for Multi-Layer Timoshenko Beam Systems Based on the Simplified[J]. Applied Mathematics and Mechanics, 2016, 37(3): 235-244. doi: 10.3879/j.issn.1000-0887.2016.03.002
Citation: XU Xiao-jian, DENG Zi-chen. The Variational Principle for Multi-Layer Timoshenko Beam Systems Based on the Simplified[J]. Applied Mathematics and Mechanics, 2016, 37(3): 235-244. doi: 10.3879/j.issn.1000-0887.2016.03.002

多层简化应变梯度Timoshenko梁的变分原理分析

doi: 10.3879/j.issn.1000-0887.2016.03.002
基金项目: 国家自然科学基金(11372252;11502202)
详细信息
    作者简介:

    徐晓建(1986—), 男,讲师, 博士(E-mail: xuxiaojian@mail.nwpu.edu.cn);邓子辰(1964—),男,教授,博士,博士生导师(通讯作者. E-mail: dweifan@nwpu.edu.cn).

  • 中图分类号: TB383; O342

The Variational Principle for Multi-Layer Timoshenko Beam Systems Based on the Simplified

Funds: The National Natural Science Foundation of China(11372252;11502202)
  • 摘要: 材料特征尺寸与其内禀尺寸相当时,材料表现出明显的尺寸效应.基于简化的应变梯度理论,通过半逆法,本文给出多层简化应变梯度Timoshenko梁的变分原理,通过最小总势能原理导出系统的边界条件并对其低阶和高阶边界条件进行讨论,随后给出简支梁系统屈曲载荷和振动频率的Rayleigh(瑞利)解.通过双层梁系统的振动分析算例得到内禀尺寸、长径比等因素对梁系统振动频率的影响.该文构造的Rayleigh解有望对其他数值方法,如有限元法、传递矩阵法等,提供一定的参考和对比.
  • [1] Peddieson J, Buchanan G R, McNitt R P. Application of nonlocal continuum models to nanotechnology[J]. International Journal of Engineering Science,2003,41(3/5): 305-312.
    [2] Wang K F, Wang B L, Kitamura T. A review on the application of modified continuum models in modeling and simulation of nanostructures[J]. Acta Mechanica Sinica,2015: 1-18. doi: 10.1007/s10409-015-0508-4.
    [3] Adali S. Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler-Bernoulli beam model[J]. Nano Letters,2009,9(5): 1737-1741.
    [4] Adali S. Variational formulation for buckling of multi-walled carbon nanotubes modelled as nonlocal Timoshenko beams[J]. Journal of Theoretical and Applied Mechanics,2012,50(1): 321-333.
    [5] Kucuk I, Sadek I S, Adali S. Variational principles for multiwalled carbon nanotubes undergoing vibrations based on nonlocal Timoshenko beam theory[J]. Journal of Nanomaterials,2010,2010(3): 461252. doi: 10.1155/2010/461252.
    [6] 李明, 郑慧明. 小尺度对振动简支单层碳纳米管边界条件的影响[J]. 固体力学学报, 2014,35(S): 6-8.(LI Ming, ZHENG Hui-ming. Small scale effect on boundary conditions of vibrating simply supported single-walled carbon nanotubes[J]. Chinese Journal of Solid Mechanics,2014,35(S): 6-8.(in Chinese))
    [7] 姚征, 郑长良. 积分形式非局部本构关系的界带分析方法[J]. 应用数学和力学, 2015,36(4): 362-370.(YAO Zheng, ZHENG Chang-liang. Inter-belt analysis of the integral-form nonlocal constitutive relation[J]. Applied Mathematics and Mechanics, 2015,36(4): 362-370.(in Chinese))
    [8] HE Ji-huan. Variational approach to (2+1)-dimensional dispersive long water equations[J]. Physics Letters A,2005,335(2/3): 182-184.
    [9] Kumar D, Heinrich C, Waas A M. Buckling analysis of carbon nanotubes modeled using nonlocal continuum theories[J]. Journal of Applied Physics,2008,103(7): 073521.
    [10] LI Xian-fang, WANG Bao-lin, LEE Kang-yong. Size effects of the bending stiffness of nanowires[J]. Journal of Applied Physics,2009,105(7): 074306.
    [11] WANG Bing-lei, ZHAO Jun-feng, ZHOU Shen-jie. A micro scale Timoshenko beam model based on strain gradient elasticity theory[J]. European Journal of Mechanics—A/Solids,2010,29(4): 591-599.
    [12] Nojoumian M A, Salarieh H. Comment on “A micro scale Timoshenko beam model based on strain gradient elasticity theory”[J]. European Journal of Mechanics—A/Solids,2013. doi: 10.1016/j.euromechsol.2013.12.003.
    [13] Challamel N. Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams[J]. Composite Structures,2013,105: 351-368.
    [14] XU Xiao-jian, DENG Zi-chen. Variational principles for the buckling and vibration of MWCNTs modeled by strain gradient theory[J]. Applied Mathematics and Mechanics(English Edition),2014,35(9): 1115-1128.
    [15] KONG Sheng-li, ZHOU Shen-jie, NIE Zhi-feng, WANG Kai. Static and dynamic analysis of micro beams based on strain gradient elasticity theory[J]. International Journal of Engineering Science,2009,47(4): 487-498.
    [16] Akgz B, Civalek . Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory[J]. Archive of Applied Mechanics,2012,82(3): 423-443.
    [17] WANG Li-feng, GUO Wan-lin, HU Hai-yan. Group velocity of wave propagation in carbon nanotubes[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science,2008,464(2094): 1423-1438.
  • 加载中
计量
  • 文章访问数:  1184
  • HTML全文浏览量:  53
  • PDF下载量:  687
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-24
  • 修回日期:  2015-12-29
  • 刊出日期:  2016-03-15

目录

    /

    返回文章
    返回