留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

T型微混合器内混合强化的数值模拟

肖水云 李鸣 杨大勇

肖水云, 李鸣, 杨大勇. T型微混合器内混合强化的数值模拟[J]. 应用数学和力学, 2016, 37(3): 301-310. doi: 10.3879/j.issn.1000-0887.2016.03.008
引用本文: 肖水云, 李鸣, 杨大勇. T型微混合器内混合强化的数值模拟[J]. 应用数学和力学, 2016, 37(3): 301-310. doi: 10.3879/j.issn.1000-0887.2016.03.008
XIAO Shui-yun, LI Ming, YANG Da-yong. Numerical simulation of mixing enhancement in T-shaped micromixers[J]. Applied Mathematics and Mechanics, 2016, 37(3): 301-310. doi: 10.3879/j.issn.1000-0887.2016.03.008
Citation: XIAO Shui-yun, LI Ming, YANG Da-yong. Numerical simulation of mixing enhancement in T-shaped micromixers[J]. Applied Mathematics and Mechanics, 2016, 37(3): 301-310. doi: 10.3879/j.issn.1000-0887.2016.03.008

T型微混合器内混合强化的数值模拟

doi: 10.3879/j.issn.1000-0887.2016.03.008
基金项目: 国家自然科学基金(11302095)
详细信息
    作者简介:

    肖水云(1991—),女,硕士生(E-mail: tinnty@qq.com);杨大勇(1978—),男,副教授,博士(通讯作者. E-mail: dayongyang@ncu.edu.cn).

  • 中图分类号: TQ027.1

Numerical simulation of mixing enhancement in T-shaped micromixers

Funds: The National Natural Science Foundation of China(11302095)
  • 摘要: 为了研究不同混合强化方式对微混合的影响,采用有限元法对T型微混合器内增加壁面非均匀Zeta电势的主动式混合以及嵌入肋板的被动式混合进行了数值模拟.对比分析了3种T型微混合器内流场、速度场和浓度场的分布,并研究了不同T型微混合器内溶液混合效率与Re和Sc之间的关系.研究结果表明,两种溶液的混合效率随着Re和Sc的增加非线性减小,且减小趋势变缓;嵌入肋板的被动式T型微混合器内的混合效率沿水平微通道方向上存在较大的波动;增加壁面非均匀Zeta电势的主动式T型微混合器内的混合效率沿水平微通道方向上的波动较小,且这种波动在高Re或低Sc时会被抑制.Re对混合方式的强化效果也有很大的影响.当Re较小时,增加壁面非均匀Zeta电势的主动式混合能更好地提高溶液的混合效率,但当Re较大时,嵌入肋板的被动式混合的混合效果更好.
  • [1] Wong S H, Ward M C L, Wharton C W. Micro T-mixer as a rapid mixing micromixer[J]. Sensors and Actuators B: Chemical,2004,100(3): 359-379.
    [2] Nguyen N T, Wu Z. Micromixers—a review[J]. Journal of Micromechanics and Microengineering,2005,15(2): R1-R16.
    [3] Wong S H, Bryant P, Ward M, Wharton C. Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies[J]. Sensors and Actuators B: Chemical,2003,95(1/3): 414-424.
    [4] Mouza A A, Patsa C M, Schnfeld F. Mixing performance of a chaotic micro-mixer[J]. Chemical Engineering Research and Design,2008,86(10): 1128-1134.
    [5] 王昆, 王嘉骏, 冯连芳, 顾雪萍. 内置阻块型微混合器内流体混合强化的数值模拟[J]. 化学工程2010,38(12): 30-34.(WANG Kun, WANG Jia-jun, FENG Lian-fang, GU Xue-ping. Numerical simulation of fluid mixing reinforcement in micro-mixers with barriers embedded[J]. Chemical Engineering(China),2010,38(12): 30-34.(in Chinese))
    [6] Mouheb N A, Malsch D, Montillet A, Solliec C, Henkel T. Numerical and experimental investigations of mixing in T-shaped and cross-shaped micromixers[J]. Chemical Engineering Science,2012,68(1): 278-289.
    [7] Parsa M K, Hormozi F, Jafari D. Mixing enhancement in a passive micromixer with convergent-divergent sinusoidal microchannels and different ratio of amplitude to wave length[J].Computers & Fluids,2014,105: 82-90.
    [8] 杨大勇, 王阳. 微通道中电渗流及微混合的离子浓度效应[J]. 应用数学和力学, 2015,36(9): 981-989.(YANG Da-yong, WANG Yang. Effects of ion concentration on electroosmotic flow and micromixing in microchannels[J]. Applied Mathematics and Mechanics,2015,36(9): 981-989.(in Chinese))
    [9] 李战华, 吴健康, 胡国庆, 胡国辉. 微流控芯片中的流体流动[M]. 北京: 科学出版社, 2012: 53-57. (LI Zhan-hua, WU Jian-kang, HU Guo-qing, HU Guo-hui. Fluid Flow in Microfluidic Chips [M]. Beijing: Science Press, 2012: 53-57.(in Chinese))
    [10] Cho C C, Ho C J, Chen C K. Enhanced micromixing of electroosmotic flows using aperiodic time-varying zeta potentials[J]. Chemical Engineering Journal,2010,163(3): 180-187.
    [11] 唐桂华, 王斐斐, 毕成, 陶文铨. 微尺度电渗混合强化的数值研究[J]. 工程热物理学报, 2010,31(10): 1721-1723.(TANG Gui-hua, WANG Fei-fei, BI Cheng, TAO Wen-quan. Numerical study of electroosmotic mixing enhancement[J]. Journal of Engineering Thermophysics,2010,31(10): 1721-1723.(in Chinese))
    [12] Jeong S, Park J, Kim J M, Park S. Microfluidic mixing using periodically induced secondary potential in electroosmotic flow[J]. Journal of Electrostatics,2011,69(5): 429-434.
    [13] Lin T Y, Chen C L. Analysis of electroosmotic flow with periodic electric and pressure fields via the lattice Poisson-Boltzmann method[J]. Applied Mathematical Modelling,2013,37(5): 2816-2829.
    [14] Alizadeh A, Zhang L, Wang M. Mixing enhancement of low-Reynolds electro-osmotic flows in microchannels with temperature-patterned walls[J]. Journal of Colloid and Interface Science,2014,431: 50-63.
    [15] Ebrahimi S, Hasanzadeh-Barforoushi A, Nejat A, Kowsary F. Numerical study of mixing and heat transfer in mixed electroosmotic/pressure driven flow through T-shaped microchannels[J]. International Journal of Heat and Mass Transfer,2014,75: 565-580.
    [16] Kandlikar S, Garimella S, Li D, Colin S, King M R. Heat Transfer and Fluid Flow in Minichannels and Microchannels [M]. Elsevier, 2005.
    [17] Erickson D, Li D. Influence of surface heterogeneity on electrokinetically driven microfluidic mixing[J]. Langmuir,2002,18(5): 1883-1892.
    [18] Zhao C, Yang C. An exact solution for electroosmosis of non-Newtonian fluids in microchannels[J].Journal of Non-Newtonian Fluid Mechanics,2011,166(17): 1076-1079.
  • 加载中
计量
  • 文章访问数:  956
  • HTML全文浏览量:  93
  • PDF下载量:  625
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-08
  • 修回日期:  2015-12-30
  • 刊出日期:  2016-03-15

目录

    /

    返回文章
    返回