留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壁面效应对剪切稀化流体内气泡上浮特性的影响

庞明军 牛瑞鹏 陆敏杰

庞明军, 牛瑞鹏, 陆敏杰. 壁面效应对剪切稀化流体内气泡上浮特性的影响[J]. 应用数学和力学, 2020, 41(2): 143-155. doi: 10.21656/1000-0887.400194
引用本文: 庞明军, 牛瑞鹏, 陆敏杰. 壁面效应对剪切稀化流体内气泡上浮特性的影响[J]. 应用数学和力学, 2020, 41(2): 143-155. doi: 10.21656/1000-0887.400194
PANG Mingjun, NIU Ruipeng, LU Minjie. Wall Effects on Floating Characteristics of Bubbles in Shear-Thinning Fluids[J]. Applied Mathematics and Mechanics, 2020, 41(2): 143-155. doi: 10.21656/1000-0887.400194
Citation: PANG Mingjun, NIU Ruipeng, LU Minjie. Wall Effects on Floating Characteristics of Bubbles in Shear-Thinning Fluids[J]. Applied Mathematics and Mechanics, 2020, 41(2): 143-155. doi: 10.21656/1000-0887.400194

壁面效应对剪切稀化流体内气泡上浮特性的影响

doi: 10.21656/1000-0887.400194
基金项目: 国家自然科学基金(51376026);江苏高校“青蓝工程”优秀青年骨干教师项目
详细信息
    作者简介:

    庞明军(1976—),男,副教授,博士(通讯作者. E-mail: pangmj@cczu.edu.cn).

  • 中图分类号: TQ021.1

Wall Effects on Floating Characteristics of Bubbles in Shear-Thinning Fluids

Funds: The National Natural Science Foundation of China(51376026)
  • 摘要: 数值研究了壁面效应对剪切稀化流体内气泡上浮运动特性的影响,气液两相的界面捕捉采用流体体积(VOF)法,剪切稀化流体流变特性和气液相间表面张力的计算分别采用Carreau模型和连续表面张力模型.详细研究了不同流变指数下,壁面效应对气泡形状、液相流场和气泡终端速度的影响.结果表明,强的壁面效应或弱的剪切稀化程度会限制气泡的变形和尾涡的形成,使气泡的终端速度减小;气泡终端速度最易受壁面效应的影响;强的壁面效应和强的剪切稀化程度会导致高剪切速率区域出现在壁面附近,引起壁面附近液相表观黏度大幅度的下降.
  • [1] UNO S, KINTNER R C. Effect of wall proximity on the rate of rise of single air bubbles in a quiescent liquid[J]. AICHE Journal,1956,2(3): 420-425.
    [2] KRISHNA R, URSEANU M I, VAN BATEN J M,et al. Wall effects on the rise of single gas bubbles in liquids[J]. International Communications in Heat and Mass Transfer,1999,26(6): 781-790.
    [3] TSUGE H, HAMAMOTO S, HIBINO S. Wall effect on the behavior of single bubbles rising in highly viscous-liquids[J]. Journal of Chemical Engineering of Japan,1984,17(6): 619-623.
    [4] MUKUNDAKRISHNAN K, QUAN S P, ECKMANN D M, et al. Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder[J]. Physical Review E,2007,76(3): 036308. DOI: 10.1103/PhysRevE.76.036308.
    [5] ALHENDAL Y, TURAN A, KALENDAR A. Wall effects on the thermocapillary migration of single gas bubbles in stagnant liquids[J]. Heat and Mass Transfer,2017,〖STHZ〗 53(4): 1315-1326.
    [6] LEE J, PARK H. Wake structures behind an oscillating bubble rising close to a vertical wall[J]. International Journal of Multiphase Flow,2017,91: 225-242.
    [7] 易妍妍, 王智慧, 杨超, 等. 静止非牛顿流体中气泡生成过程的传质[J]. 化工学报, 2015,66(11): 4335-4341.(YI Yanyan, WANG Zhihui, YANG Chao, et al. Mass transfer during single bubble growing in static non-Newtonian fluid[J]. CIESC Journal,2015,66(11): 4335-4341.(in Chinese))
    [8] OHTA M, KOBAYASHI N, SHIGEKANE Y, et al. The dynamic motion of single bubbles with unique shapes rising freely in hydrophobically modified alkali-soluble emulsion polymer solutions[J]. Journal of Rheology,2015,59(2): 303-316.
    [9] MIYAHARA T, YAMANAKA S. Mechanics of motion and deformation of a single bubble rising through quiescent highly viscous Newtonian and non-Newtonian media[J]. Journal of Chemical Engineering of Japan,1993,26(3): 297-302.
    [10] PREMLATA A R, TRIPATHI M K, KARRI B, et al. Dynamics of an air bubble rising in a non-Newtonian liquid in the axisymmetric regime[J]. Journal of Non-Newtonian Fluid Mechanics,2017,239: 53-61.
    [11] PORYLES R, VIDAL V. Rising bubble instabilities and fragmentation in a confined polymer solution[J]. Journal of Non-Newtonian Fluid Mechanics,2017,241: 26-33.
    [12] XU X F, ZHANG J, LIU F X, et al. Rising behavior of single bubble in infinite stagnant non-Newtonian liquids[J]. International Journal of Multiphase Flow,2017,95: 84-90.
    [13] KISHORE N, NALAJALA V S, CHHABRA R P. Effects of contamination and shear-thinning fluid viscosity on drag behavior of spherical bubbles[J]. Industrial & Engineering Chemical Research,2013,52(17): 6049-6056.
    [14] 黄萌. 电场作用下油水乳液中水滴的运动和形变特性研究[D]. 博士学位论文. 西安: 西安交通大学, 2015.(HUANG Meng. Investigation on motion and deformation of water drops in oil-water emulsion under electrostatic field[D]. PhD Thesis. Xi’an: Xi’an Jiaotong University, 2015.(in Chinese))
    [15] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics,1992,100(2): 335-354.
    [16] DEKEE D, CARREAU P J. Friction factors and bubble dynamics in polymer solutions[J]. The Canadian Journal of Chemical Engineering,1993,71(2): 183-188.
    [17] DIMAKOPOULOS Y, PAVLIDIS M, TSAMOPOULOS J. Steady bubble rise in Herschel-Bulkley fluids and comparison of predictions via the augmented Lagrangian method with those via the Papanastasiou model[J]. Journal of Non-Newtonian Fluid Mechanics,2013,200: 34-51.
    [18] BHAGA D, WEBER M E. Bubbles in viscous liquids: shapes, wakes and velocities[J]. Journal of Fluid Mechanics,1981,105: 61-85.
    [19] KUMAR P, VANKA S P. Effects of confinement on bubble dynamics in a square duct[J]. International Journal of Multiphase Flow,2015,〖STHZ〗 77: 32-47.
    [20] 徐丞君, 徐胜利, 刘庆源. 修正压力梯度粒子近似SPH方法计算大密度比界面流动[J]. 应用数学和力学, 2019,40(1): 20-35.(XU Chengjun, XU Shengli, LIU Qingyuan. Modified particle approximation to pressure gradients in the SPH algorithm for interfacial flows with high density rations[J]. Applied Mathematics and Mechanics,2019,40(1): 20-35.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1427
  • HTML全文浏览量:  263
  • PDF下载量:  387
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-19
  • 修回日期:  2019-08-04
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回