留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁场和Hall电流对狭窄动脉中血液流动的影响

Kh·S·梅克赫默 M·A·El·科特

Kh·S·梅克赫默, M·A·El·科特. 磁场和Hall电流对狭窄动脉中血液流动的影响[J]. 应用数学和力学, 2008, 29(8): 991-1002.
引用本文: Kh·S·梅克赫默, M·A·El·科特. 磁场和Hall电流对狭窄动脉中血液流动的影响[J]. 应用数学和力学, 2008, 29(8): 991-1002.
Kh. S. Mekheimer, M. A. El Kot. Magnetic Field and Hall Currents Influences on Blood Flow Through a Stenotic Artery[J]. Applied Mathematics and Mechanics, 2008, 29(8): 991-1002.
Citation: Kh. S. Mekheimer, M. A. El Kot. Magnetic Field and Hall Currents Influences on Blood Flow Through a Stenotic Artery[J]. Applied Mathematics and Mechanics, 2008, 29(8): 991-1002.

磁场和Hall电流对狭窄动脉中血液流动的影响

详细信息
  • 中图分类号: O361.3;O361.4;Q66

Magnetic Field and Hall Currents Influences on Blood Flow Through a Stenotic Artery

  • 摘要: 对一个水平向不对称、竖直向对称,带有轻微狭窄的动脉,提出了血液磁流体动力学流动的微极模型.为了估计狭窄形状的影响,几何上加以适当地考虑,通过选取不同的参数(称为形状参数),很方便地改变水平向的狭窄情况.在不同形状参数、Hartmann数和Hall参数下,计算了流动参数,例如流速、流动阻力(阻力阻抗)、狭窄区域血管壁面剪应力分布以及狭窄最大凸起高度位置处(狭窄喉部)的壁面剪应力大小.结果表明,流动阻力随着确定狭窄情况参数值和Hall参数值的增大而减小,并随着Hartmann数的增大而增大.对任意给定的Hartmann数和Hall参数,血管壁面剪应力和血管狭窄部位凸起最大高度处的管壁剪应力,具有与流动阻力相反的特征.最后,给出了Hartmann数和Hall参数对水平速度的影响.
  • [1] Craig I J D, Watson P G.Magnetic reconnection solutions based on a generalized Ohm's law[J].Solar Phys,2003,214(1):131-150. doi: 10.1023/A:1024075416016
    [2] Stud V K, Sephon G S, Mishra R K.Pumping action on blood flow by a magnetic field[J].Bull Math Biol,1997,39(3):385-390.
    [3] Agrawal H L,Anwaruddin B.Peristaltic flow of blood in a branch[J].Ranchi Univ Math J,1984,15:111-121.
    [4] Bharali A, Borkakati A K.The effect of Hall currents on MHD flow and heat transfer between two parallel porous plates[J].Appl Sci Res,1982,39(2):155-165. doi: 10.1007/BF00457017
    [5] Asghar S, Parveen S, Hanif S,et al.Hall effects on the unsteady hydromagnetic flows of an Oldroyd-B fluid[J].Internat J Engrg Sci,2003,41(6):609-619. doi: 10.1016/S0020-7225(02)00153-2
    [6] Megahed A A, Komy S R, Afify A A.Similarity analysis in magnetohydrodynamics: Hall effects on free convection flow and mass transfer past a semi-infinite vertical flat plate[J].Internat J Non-Linear Mech,2003,38(4):513-520. doi: 10.1016/S0020-7462(01)00077-4
    [7] Mohyuddin M R, Ashraf E E.Inverse solutions for a second-grade fluid for porous medium channel and Hall current effects[J].Proc Indian Acad Sci,Math Sci,2004,114(1):79-96. doi: 10.1007/BF02829673
    [8] Hayat T, Naz R, Asghar S. Hall effects on unsteady duct flow of a non-Newtonian fluid in a porous medium[J].Appl Math Comp,2004,157(1):103-114. doi: 10.1016/j.amc.2003.08.069
    [9] Hayat T, Wang Y, Hutter K. Hall effects on the unsteady hydromagnetic oscillatory flow of a second-grade fluid[J].Internat J Non-Linear Mech,2004,39(6):1027-1037. doi: 10.1016/S0020-7462(03)00094-5
    [10] Eringen A C. Theory of micropolar fluid[J].J Math Mech,1966,16(1):11-18.
    [11] Agarwal R S,Dhanapal C.Numerical solution to the flow of micropolar fluid between porous walls of different permeability[J].Internat J Engrg Sci,1987,25(33):325-336. doi: 10.1016/0020-7225(87)90039-5
    [12] Haldar K.Effects of the shape of stenosis on the resistance to blood flow through an artery[J].Bull Math Biol,1985,47(4):545-550.
    [13] Srivistava L M.Flow of couple stress fluid through stenotic blood vessels[J].J Biomech,1985,18(7):479-485. doi: 10.1016/0021-9290(85)90662-1
    [14] Srivastava V P.Arterial blood flow through a nonsymmetrical stenosis with applications[J].Jpn J Appl Phys,1995,34(12):6539-6545. doi: 10.1143/JJAP.34.6539
    [15] Ang K C, Mazumdar J N.Mathematical modeling of three dimensional flow through an asymmetric arterial stenosis[J].Math Comput Modelling,1997,25(1):19-29.
    [16] Srivastava V P,Saxena M.Suspension model for blood flow through stenotic arteries with a cell-free plasma layer[J].Math Biosci,1997,139(2):79-102. doi: 10.1016/S0025-5564(96)00130-7
    [17] Chakravarty S, Mandal P K.Two-dimensional blood flow through tapered arteries under stenotic conditions[J].Internat J Non-Linear Mech,2000,35(5):779-793. doi: 10.1016/S0020-7462(99)00059-1
    [18] Liu B, Tang D.A numerical simulation of viscous flows in collapsible tubes with stenosis[J].Appl Numer Math,2000,32(1):87-101. doi: 10.1016/S0168-9274(99)00015-X
    [19] El-Shahed M.Pulsatile flow of blood through a stenosed porous medium under periodic body acceleration[J].Appl Math Comput,2003,138(2/3):479-488. doi: 10.1016/S0096-3003(02)00164-9
    [20] Jung H, Choi J W,Park C G. Asymmetric flows of non-Newtonian fluids in symmetric stenosed artery[J].K-A Rheol J,2004,16(6):101-108.
    [21] Liu G T, Wang X J, Ai B Q,et al.Numerical study of pulsating flow through a tapered artery with stenosis[J].Chinese J Phys,2004,42(4):401-409.
    [22] Mandal P K.An unsteady analysis of non-Newtonian blood flow through tapered arteries with a stenosis[J].Internat J Non-Linear Mech,2005,40(1):151-164. doi: 10.1016/j.ijnonlinmec.2004.07.007
    [23] Pralhad R N, Schulz D H.Modeling of arterial stenosis and its applications to blood diseases[J].Math Biosci,2004,190(2):203-220. doi: 10.1016/j.mbs.2004.01.009
    [24] Young D F.Effect of a time dependent stenosis of flow through a tube[J].J Engrg Ind,Trans ASME,1968,90:248-254. doi: 10.1115/1.3604621
  • 加载中
计量
  • 文章访问数:  2382
  • HTML全文浏览量:  20
  • PDF下载量:  642
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-03-22
  • 修回日期:  2008-06-06
  • 刊出日期:  2008-08-15

目录

    /

    返回文章
    返回