留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

传热传质对有抽吸的收缩薄片上的非线性磁流体动力学边界层流动的影响

M·R·坎达沙密 A·B·哈米什

M·R·坎达沙密, A·B·哈米什. 传热传质对有抽吸的收缩薄片上的非线性磁流体动力学边界层流动的影响[J]. 应用数学和力学, 2008, 29(10): 1191-1198.
引用本文: M·R·坎达沙密, A·B·哈米什. 传热传质对有抽吸的收缩薄片上的非线性磁流体动力学边界层流动的影响[J]. 应用数学和力学, 2008, 29(10): 1191-1198.
Muhaimin R. Kandasamy, Azme B. Khamis. Effects of Heat and Mass Transfer on Non-Linear MHD Boundary Layer Flow Over a Shrinking Sheet in the Presence of Suction[J]. Applied Mathematics and Mechanics, 2008, 29(10): 1191-1198.
Citation: Muhaimin R. Kandasamy, Azme B. Khamis. Effects of Heat and Mass Transfer on Non-Linear MHD Boundary Layer Flow Over a Shrinking Sheet in the Presence of Suction[J]. Applied Mathematics and Mechanics, 2008, 29(10): 1191-1198.

传热传质对有抽吸的收缩薄片上的非线性磁流体动力学边界层流动的影响

基金项目: 马亚西亚基金资助项目(FRCS(0406/2007))
详细信息
  • 中图分类号: O361.3

Effects of Heat and Mass Transfer on Non-Linear MHD Boundary Layer Flow Over a Shrinking Sheet in the Presence of Suction

  • 摘要: 研究有抽吸作用的可收缩薄片上的磁流体动力学粘性流动.讨论了二维轴对称可收缩问题.利用相似变换给出了无量纲形式的边界层控制方程.利用现代数值技术,数值地求解变换后耦合的非线性常微分方程组,并与现有文献的结果进行了比较.得到了无量纲速度、 温度、 浓度的分布, 以及表面摩擦、 传热率、 传质率和沉积率的数值结果,并用图形显示了与解有关的重要参数.
  • [1] Bhattacharyya S N,Gupta A S. On the stability of viscous flow over a stretching sheet[J].Quart Appl Math,1985,43(3):359-367.
    [2] Brady J F,Acrivos A.Steady flow in a channel or tube with accelerating surface velocity. An exact solution to the Navier-Stokes equations with reverse flow[J].J Fluid Mech,1981,112:127-150. doi: 10.1017/S0022112081000323
    [3] Crane L J. Flow past a stretching plate[J].ZAMP,1970,21(4):645-647. doi: 10.1007/BF01587695
    [4] Gupta P S,Gupta A S.Heat and mass transfer on a stretching sheet with suction and blowing[J].Can J Chem Eng,1977,55(1):744-746. doi: 10.1002/cjce.5450550619
    [5] Jensen K F, Einset E O,Fotiadis D I.Flow phenomena in chemical vapor deposition of thin films[J].Ann Rev Fluid Mech,1991,23(1):197-232. doi: 10.1146/annurev.fl.23.010191.001213
    [6] McLeod J B,Rajagopal K R.On the uniqueness of flow of a Navier-Stokes fluid due to a stretching boundary[J].Arch Rat Mech Anal,1987,98(4):385-393. doi: 10.1007/BF00276915
    [7] Troy W, Overman II E A,Ermentrout G B,et al.Uniqueness of flow of a second-order fluid past a stretching sheet[J].Quart Appl Math,1987,44(4):753-755.
    [8] Usha R,Sridharan R.The axisymmetric motion of a liquid film on an unsteady stretching surface[J].J Fluids Eng,1995,117(1):81-85. doi: 10.1115/1.2816830
    [9] Wang C Y.The three-dimensional flow due to a stretching flat surface[J]. Phys Fluids,1984,27(8):1915-1917. doi: 10.1063/1.864868
    [10] Wang C Y.Fluid flow due to a stretching cylinder[J].Phys Fluids,1988,31(3):466-468. doi: 10.1063/1.866827
    [11] Wang C Y.Liquid film on an unsteady stretching sheet[J].Quart Appl Math,1990,48(4):601-610.
    [12] Hakiem M A EL,Mohammadeian A A,Kaheir S M M EL,et al.Joule heating effects on MHD free convection flow of a micropolar fluid[J].International Comms Heat Mass Transfer,1999,26(2):219-227. doi: 10.1016/S0735-1933(99)00008-1
    [13] Kuo Bor-Lih. Heat transfer analysis for the Falkner-Skan wedge flow by the differential transformation method[J].Internat J Heat Mass Transfer,2005,48(23/24): 5036-5046. doi: 10.1016/j.ijheatmasstransfer.2003.10.046
    [14] Cheng W T, Lin H T.Non-similarity solution and correlation of transient heat transfer in laminar boundary layer flow over a wedge[J].Internat J Engg Sci,2002,40(5):531-548. doi: 10.1016/S0020-7225(01)00081-7
    [15] Apelblat A. Mass transfer with a chemical reaction of the first order. Effects of axial diffusion[J].The Chemical Engineering Journal,1982,23(2):193-203. doi: 10.1016/0300-9467(82)80011-7
    [16] Cebeci T,Bradshaw P.Physical and Computational Aspects of Convective Heat Transfer[M].New York:Springer-Verlag, 1984,79-80.
    [17] Schlichting H,Gersten K.Boundary Layer Theory[M].New York: McGraw Hill Inc,1979,164.
    [18] Yih K A.Uniform suction/blowing effect on forced convection about a wedge: Uniform heat flux[J].Acta Mech,1998,128(3/4):173-181. doi: 10.1007/BF01251888
    [19] Watanabe T.Thermal boundary layers over a wedge with uniform suction or injection in forced flow[J].Acta Mech,1990,83(3/4):119-126. doi: 10.1007/BF01172973
    [20] Kafoussias N G,Nanousis N D. Magnetohydrodynamic laminar boundary-layer flow over a wedge with suction or injection[J].Can J Phys,1997,75(10): 733-745. doi: 10.1139/p97-024
    [21] Sajid M, Javed T,Hayat T. MHD rotating flow of a viscous fluid over a shrinking surface[J].Nonlinear Dynamics,2008,51(1/2): 259-265.
    [22] Hayat T, Abbas Z, Sajid M.On the analytic solution of magnetohydrodynamic flow of a second grade fluid over a shrinking sheet[J].Journal of Applied Mechanics,2007,74(6):1165-1170. doi: 10.1115/1.2723820
    [23] Sajid M,Hayat T.The application of homotopy analysis method for MHD viscous flow due to a shrinking sheet[J].Chaos, Solutions and Fractals,on line 23 July,2007.
    [24] Miklavcic M,Wang C Y.Viscous flow due to a shrinking sheet[J].Quart Appl Math,2006,64(2):283-290.
    [25] Gill S. A process for the step-by-step integration of differential equations in an automatic digital computing machine[J].Proceedings of the Cambridge Philosophical Society,1951,47(1):96-108. doi: 10.1017/S0305004100026414
    [26] Minkowycz W J, Sparrow E M, Schneider G E,et al. Handbook of Numerical Heat Transfer[M].New York:John Wiley and Sons, 1988,192-195.
    [27] Kafoussias N G,Karabis A G.Magnetohydrodynamic laminar boundary layer flow over a wedge[A].In:Sotiropoulos D A,Beskos D E,Eds.Proceedings of the 2nd National Congress on Computational Mechanics[C].Chania, Greece, June 26-28, 1996, Vol Ⅱ.Greek Association of Computational Mechanics, Member of IACM, 1996, 801- 809.
    [28] Kafoussias N G,Williams E W. An improved approximation technique to obtain numerical solution of a class of two-point boundary value similarity problems in fluid mechanics[J].Internt J Num Methods Fluids,1993,17(2): 145-162. doi: 10.1002/fld.1650170204
    [29] Wilhelm Dirk,Hartel Crlos,Kleiser Leonhard.Computational analysis of the two-dimensional-three-dimensional transition in forward-facing step flow[J].J Fluid Mech,2003,489:1-27. doi: 10.1017/S0022112003004440
  • 加载中
计量
  • 文章访问数:  2047
  • HTML全文浏览量:  46
  • PDF下载量:  524
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-01-28
  • 修回日期:  2008-09-10
  • 刊出日期:  2008-10-15

目录

    /

    返回文章
    返回