留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

污染物在非饱和带内运移的流固耦合数学模型及其渐近解

薛强 梁冰 刘晓丽 李宏艳

薛强, 梁冰, 刘晓丽, 李宏艳. 污染物在非饱和带内运移的流固耦合数学模型及其渐近解[J]. 应用数学和力学, 2003, 24(12): 1309-1318.
引用本文: 薛强, 梁冰, 刘晓丽, 李宏艳. 污染物在非饱和带内运移的流固耦合数学模型及其渐近解[J]. 应用数学和力学, 2003, 24(12): 1309-1318.
XUE Qiang, LIANG Bing, LIU Xiao-li, LI Hong-yan. Fluid-Solid Coupling Mathematical Model of Contaminant Transport in Unsaturated Zone and Its Asymptotical Solution[J]. Applied Mathematics and Mechanics, 2003, 24(12): 1309-1318.
Citation: XUE Qiang, LIANG Bing, LIU Xiao-li, LI Hong-yan. Fluid-Solid Coupling Mathematical Model of Contaminant Transport in Unsaturated Zone and Its Asymptotical Solution[J]. Applied Mathematics and Mechanics, 2003, 24(12): 1309-1318.

污染物在非饱和带内运移的流固耦合数学模型及其渐近解

基金项目: 国家"十五"攻关资助项目(2001BA803B0404);辽宁省自然科学技术基金资助项目(2001101063)
详细信息
    作者简介:

    薛强(1976- ),男,山东潍坊人,博士研究生(E-mail:milson-xq@163.com).

  • 中图分类号: TU411

Fluid-Solid Coupling Mathematical Model of Contaminant Transport in Unsaturated Zone and Its Asymptotical Solution

  • 摘要: 污染物在非饱和带中运移过程是多组分多相渗流问题.在考虑气相的存在对水相影响的前提下,基于流固耦合力学理论,建立了污染物在非饱和带内运移的流固耦合数学模型.对该强非线性数学模型采用摄动法及积分变换法进行拟解析求解,得出了解析表达式.对非饱和带内的孔隙压力分布、孔隙水流速以及污染物的浓度在耦合与非耦合气相条件下的分布规律进行解析计算.对该渐近解与Faust模型的计算结果进行了对比分析,结果表明:该模型解与Faust解基本吻合,且气相作用以及介质的变形对溶质的输运过程产生较大的影响,从而验证了解析表达式的正确性和实用性.这为定量化预报预测污染物在非饱和带中迁移转化和实验室确定压力-饱和度-渗透率三者之间的关系提供了可靠的理论依据.
  • [1] Kandil H,Miller C T,Skaggs R W.Modeling long-term solute transport in drained unsaturated zones[J].Water Resources Research,1992,28(10):2799-2809.
    [2] 李韵珠,李保国.土壤溶质的运移[M].北京:科学出版社,1998,113-130.
    [3] 李锡夔.饱和-非饱和土壤中污染物运移过程的数值模拟[J].力学学报,1998,30(3):321-332.
    [4] Parker J C.A parametric model for constitutive properties governing multiphase flow in porous media[J].Water Resource Research,1987,23(4):619-623.
    [5] Abriola L M,Pinder G F.A multiphase approach to the modeling of porous media contamination by organic compounds-2:Numerical simulation[J].Water Resource Research,1985,21(1):19-27.
    [6] Abriola L M,Pinder G F.A multiphase approach to the modeling of porous media contamination by organic compounds-1:Equation development[J].Water Resource Research,1985,21(1):11-18.
    [7] Kuppusamy T.Finite-element analysis of multiphase immiscible flow through soils[J].Water Resource Research,1987,23(4):625-631.
    [8] Faust C R.Transport of immiscible fluids within and below the unsaturated zone:A numerical model[J].Water Resource Research,1985,21(4):587-596.
    [9] Milly C D.Advances in modeling of water in the unsaturated zone[J].Transport in Porous Media,1988,3(2):491-514.
    [10] 唐海行,张和平.考虑气压势影响的降雨入渗数值模拟研究[J].水科学进展,1996,7(1):8-13.
    [11] Touma J,Vauclin M.Experimental and numerical analysis of two-phase infiltration in a partially saturated soil[J].Transport in Porous Media,1986,12(1):27-55.
    [12] Weir G J,Kissling WM.The influence of gasflow on the vertical infiltration of water into soil[J].Water Resource Research,1992,28(10):2765-2772.
    [13] 贝尔J.多孔介质流体动力学[M].李竟生,陈崇希译.北京:中国建筑工业出版社,1983,158-166.
    [14] 钱伟长.奇异摄动理论在力学中的应用[M].北京:科学出版社,1981,186-191.
    [15] Kurashige M.Tansient response of a fluid-saturated poroelastic layer subjected to a sudden fluid pressure rise[J].J Appl Mech,1982,49(2):492-496.
  • 加载中
计量
  • 文章访问数:  3032
  • HTML全文浏览量:  157
  • PDF下载量:  737
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-03-30
  • 修回日期:  2003-05-16
  • 刊出日期:  2003-12-15

目录

    /

    返回文章
    返回