留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴向复合载荷作用下变截面悬臂弹性立柱后屈曲分析

吴莹 李世荣 滕兆春

吴莹, 李世荣, 滕兆春. 轴向复合载荷作用下变截面悬臂弹性立柱后屈曲分析[J]. 应用数学和力学, 2003, 24(9): 984-990.
引用本文: 吴莹, 李世荣, 滕兆春. 轴向复合载荷作用下变截面悬臂弹性立柱后屈曲分析[J]. 应用数学和力学, 2003, 24(9): 984-990.
WU Ying, LI Shi-rong, TENG Zhao-chun. Post-Buckling of a Cantilever Rod with Variable Cross-Sections Under Combined Load[J]. Applied Mathematics and Mechanics, 2003, 24(9): 984-990.
Citation: WU Ying, LI Shi-rong, TENG Zhao-chun. Post-Buckling of a Cantilever Rod with Variable Cross-Sections Under Combined Load[J]. Applied Mathematics and Mechanics, 2003, 24(9): 984-990.

轴向复合载荷作用下变截面悬臂弹性立柱后屈曲分析

基金项目: 科技部基础研究重大项目前期预研专项基金资助项目(2001CCA04300)
详细信息
    作者简介:

    吴莹(1967- ),女,安徽灵壁人,副教授(E-mail:wying36@163.com).

  • 中图分类号: O343

Post-Buckling of a Cantilever Rod with Variable Cross-Sections Under Combined Load

  • 摘要: 基于轴线可伸长弹性杆的几何非线性理论,建立了同时作用端部轴向集中荷载和沿轴线作用分布轴向载荷的变截面弹性悬臂柱的后屈曲控制方程。采用打靶法直接求解了所得强非线性边值问题,给出了截面线性变化的圆截面柱的二次平衡路径及其过屈曲位形曲线。
  • [1] Euler L.De Curvis Elasticis, Methodus Inveniendi Lineas Maximi Minimive Proprietate Ganudentes[M].Lausanne & Geneva, 1744.
    [2] Lagrange J L. Qeuvres de Lagrange[M].Vol 2.Paris:Gauthier-Villars, 1868,125-170.
    [3] Love A E H.Treaties on the Mathematical Theory of Elasticity[M].New York:Dever, 1927.
    [4] Timoshenko S P,Gere J M.Theory of Elastic Stability[M].2nd Ed. New York:MacGraw-Hill,1961.
    [5] Wang C Y.Post-buckling of a clamped-simply supported elastica[J].International Journal of Non-Linear Mechanics,1997,32(6):1115-1122.
    [6] Plaut R H,Suherman S,Dillard D A,et al.Deflections and buckling of a bent elastics in contact with a flat surface[J].International Journal of Solids and Structures,1999,36(8): 1209-1229.
    [7] Lee K. Post-buckling of uniform cantilever column under a combined load[J].International Journal of Non-Linear Mechanics, 2001,36(5):813-816.
    [8] 程昌钧,朱正佑.结构的分叉与屈曲[M].兰州:兰州大学出版社,1991.
    [9] 朱正佑,程昌钧.分支问题的数值计算方法[M].兰州:兰州大学出版社,1989.
    [10] 李世荣,李中明.压杆过屈曲分析中轴线无伸长假设的定量讨论[J].兰州大学学报(自然科学版),1997,33(4):42-46.
    [11] 李世荣,杨静宁.固支-简支变截面杆的过屈曲模型及其数值解[J].计算力学学报,2000,17(1):114-118.
    [12] 李世荣,程昌钧.加热弹性杆热屈曲分析[J].应用数学和力学,2000,21(2):119-125.
    [13] 李世荣.非对称支承弹性杆的热过屈曲[J].工程力学,2000,17(5):115-120.
    [14] LI Shi-rong,ZHOU You-he,ZHENG Xiao-jing.Thermal post-buckling of a heated elastic rod with pinned-fixed ends[J].Journal of Thermal Stresses, 2002, 25(1):45-56.
    [15] Coffin D W,Bloom F.Elastica solution for the hygrothermal buckling of a beam[J].International Journal of Non-Linear Mechanics,1999,34(5):935-947.
    [16] Filipich C P,Rosales M B.A further study on the post-buckling of extensible elastic rods[J].International Journal of Non-Linear Mechanics, 2000,35(5):997-1022.
    [17] William H P,Brain P F,Sao A T,et al.Numerical Recipes-the Art of Scientific Computing[M].London: Cambridge University Press, 1986.
  • 加载中
计量
  • 文章访问数:  2117
  • HTML全文浏览量:  101
  • PDF下载量:  600
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-06-28
  • 修回日期:  2003-05-28
  • 刊出日期:  2003-09-15

目录

    /

    返回文章
    返回