留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维非定常/定常不可压缩流动N-S方程基于人工压缩性方法的数值模拟

温功碧 陈作斌

温功碧, 陈作斌. 三维非定常/定常不可压缩流动N-S方程基于人工压缩性方法的数值模拟[J]. 应用数学和力学, 2004, 25(1): 53-66.
引用本文: 温功碧, 陈作斌. 三维非定常/定常不可压缩流动N-S方程基于人工压缩性方法的数值模拟[J]. 应用数学和力学, 2004, 25(1): 53-66.
WEN Gong-bi, CHEN Zuo-bin. Unsteady/Steady Numerical Simulation of Three-Dimensional Incompressible Navier-Stokes Equations on Artificial Compressibility[J]. Applied Mathematics and Mechanics, 2004, 25(1): 53-66.
Citation: WEN Gong-bi, CHEN Zuo-bin. Unsteady/Steady Numerical Simulation of Three-Dimensional Incompressible Navier-Stokes Equations on Artificial Compressibility[J]. Applied Mathematics and Mechanics, 2004, 25(1): 53-66.

三维非定常/定常不可压缩流动N-S方程基于人工压缩性方法的数值模拟

详细信息
    作者简介:

    温功碧(1935- ),女,四川梁平人,教授(联系人.Tel:86-10-62752334;E-mail:wengb@mech.pku.edu.cn).

  • 中图分类号: R318.01

Unsteady/Steady Numerical Simulation of Three-Dimensional Incompressible Navier-Stokes Equations on Artificial Compressibility

  • 摘要: 基于人工压缩性方法提出—中心与迎风混合的算法,以数值模拟N-S方程的定常/非定常解.对半离散方程的左端采用中心差分, 方程右端数值流量采用迎风Roe近似算法,其精度可达三阶.湍流模式利用Baldwin-Lomax代数模式.计算例子包括二维平板、机翼剖面、扁椭球、颅动脉瘤等.计算结果表明,压力和摩擦系数与实验符合,在分离涡旋区计算值与实验有差别,这或许是由于湍流模式不够精确的缘故.
  • [1] Chorin A J. A numerical method for solving incompressible viscous flow problem[J].Journal of Computation Physics,1967,2:12—26. doi: 10.1016/0021-9991(67)90037-X
    [2] Turkle E.Preconditioned methods for solving the incompressible and low-speed compressible equations[J]. Journal of Computation Physics,1987,72(2):277—298. doi: 10.1016/0021-9991(87)90084-2
    [3] Merkle C L,Choi D. Application of time-iterative schemes to incompressible flow[J].AIAA J, 1985,23(10):1518—1524. doi: 10.2514/3.9119
    [4] Chang J L C,Kwak D. On the method of pseudo compressibility for numerically solving incompressible flows[R]. AIAA-84-0252.
    [5] Pan D,Chakravarthy S. Unified formulation for incompressible flows[R]. AIAA-89-0122.
    [6] Rogers S E,Kwak D,Kiri C. Steady and unsteady solution of the incompressible Navier-Stokes equation[J].AIAA J,1991,29(4):603—610. doi: 10.2514/3.10627
    [7] Whitefield D L,Taylor L K. Unsteady three-dimensional incompressible Euler and Navier-Stokes solver for stationary and dynamic grids[R]. AIAA-91-1650.
    [8] Roe P L. Approximate Riemann solvers,parameter vectors, and difference schemes[J].Journal of Computational Physics,1981,43(10):357—372. doi: 10.1016/0021-9991(81)90128-5
    [9] Baldwin B S,Lomax H. Thin-layer approximation and algebraic model for separated turbulent flows[R]. AIAA-78-257.
    [10] Rogers S E,Kwak D,Kaul U. On the accuracy of the pseudocompressibility method in solving the incompressible Navier-Stokes equations[R]. AIAA-85-1689.
    [11] Taylor L K, Arabshahi A,Whitefield D L. Unsteady three-dimensional incompressible Navier-Stokes computations for a prolate spheroid undergoing time-dependent maneuvers[R]. AIAA-95-0313.
    [12] Taylor L K. Unsteady three-dimensional impressible algorithm based on artificial compressibility[D]Ph D Dissertation.Mississippi State University,1991.
    [13] Pulliam T H,Steger J L.Implicit finite-difference simulations of three-dimensional compressible flow[J].AIAA,1980,18(2):159—167. doi: 10.2514/3.50745
    [14] 温功碧.三维定常/非定常不可压缩流动N-S方程基于人工压缩性方法的数值模拟[R]. 中国空气动力研究和发展中心 技术报告,2001.
    [15] Choi D,Merkle C L. Application of time-iterative schemes to incompressible flow[J].AIAA,1985,23(10):1518—1524. doi: 10.2514/3.9119
    [16] Wu J C, Wang C M,Tuncer I H.Unsteady aerodynamics of rapidly pitched airfoils[R]. AIAA 86-1105.
    [17] Rosenfeld M, Israeli M ,Wolfshtein M. Numerical study of the skin Friction on a spheroid at incidence[J].AIAA,1988,26(2):129—136. doi: 10.2514/3.9863
    [18] Dallmann U. Topological structures of three dimension vortex flow separation[R]. AIAA 83-1735.
    [19] Hirsch R S,Cebeci T. Calculation of three dimension boundary layers with negative cross flow on bodies of revolution[R]. AIAA 77-683.
    [20] Hoang N T, Wetzel T G, Simpson R L. Surface pressure measurements over a 6∶1 prolate spheroid undergoing time-dependent maneuvers[R]. AIAA 94-1908.
    [21] Sheng C, Taylor L K, Whitefield D L. A multigrid algorithm for three-dimensional incompressible high Reynolds number turbulent flows[J]. AIAA,1995,33(11):2073—2079. doi: 10.2514/3.12949
    [22] Hoang N T, Wetzel T G, Simpson R L. Unsteady measurements over a 6∶1 prolate spheroid undergoing a pitch-up maneuver[R]. AIAA 94-0197.
  • 加载中
计量
  • 文章访问数:  3403
  • HTML全文浏览量:  25
  • PDF下载量:  931
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-06-18
  • 修回日期:  2003-07-22
  • 刊出日期:  2004-01-15

目录

    /

    返回文章
    返回