Chaos in Transiently Chaotic Neural Networks
-
摘要: 首先利用"不可分意味着混沌"从理论上证明了一维瞬时混沌神经网络在一定的条件下按Li-Yorke意义是混沌的;特别地,进一步推出了混沌神经网络按Li-Yorke意义是混沌的充分条件,而这将从理论上证明Aihara等人通过数值计算所得结论;最后,为说明前面的结论给出了一个例子及其数值计算的结果。Abstract: It was theoretically proved that one-dimensional transiently chaotic neural networks have chaotic structure in sense of Li-Yorke theorem with some given assumptions using that no division implies chaos.In particular,it is further derived sufficient conditions for the existence of chaos in sense of Li-Yorke theorem in chaotic neural network,which leads to the fact that Aihara has demonstrated by numerical method.Finally,an example and numerical simulation are shown to illustrate and reinforce the previous theory.
-
Key words:
- chaotic neural networks /
- chaos /
- no division
-
[1] Chen L,Aihara K.Chaotic simulated annealing by a neural networks model with transient chaos[J].Neural Networks,1995,8(6):915-930. [2] Aihara K,Takabe T,Toyoda M.Chaotic neural networks[J].Phys Lett A,1990,144(6):333-340. [3] Chen L,Aihara K.Chaos and asymptotical stability in discrete-time neural networks[J].Physica D,1997,104(2):286-325. [4] Chen L,Aihara K.Global searching ability of chaotic neural networks[J].IEEE Trans Circuits Systems I,1999,46(8):974-993. [5] Marotto F R.Snap-back repellers imply chaos in Rn[J].J Math Anal Appl,1978,63(1):199-223. [6] Chen G,Hsu S B,Zhou J.Snapback repelers as a cause of chaotic vibration of the wave equation with a Van der Pol boundary condition and energy injection at the middle of the span[J].J Math Phys,1998,39(12):6459-6489. [7] Li T,Misiurewicz M,Pianigiani G,et al.No division implies chaos[J].Trans Amer Math Soc,1982,273(1):191-199. [8] Li T,Yorke J.Period three implies chaos[J].Amer Math Monthly,1975,82(1):985-992. [9] Adachi M,Aihara K.Associative dynamics in a chaotic neural networks[J].Neural Networks,1997,10(1):83-98.
计量
- 文章访问数: 2176
- HTML全文浏览量: 139
- PDF下载量: 646
- 被引次数: 0