留言板

Krylov子空间投影法及其在油藏数值模拟中的应用

 引用本文: 刘晓明, 卢志明, 刘宇陆. Krylov子空间投影法及其在油藏数值模拟中的应用[J]. 应用数学和力学, 2000, 21(6): 551-560.
Liu Xiaoming, Lu Zhiming, Liu Yulu. Krylov Subspace Projection Method and ItsApplication on Oil Reservoir Simulation[J]. Applied Mathematics and Mechanics, 2000, 21(6): 551-560.
 Citation: Liu Xiaoming, Lu Zhiming, Liu Yulu. Krylov Subspace Projection Method and ItsApplication on Oil Reservoir Simulation[J]. Applied Mathematics and Mechanics, 2000, 21(6): 551-560.

Krylov子空间投影法及其在油藏数值模拟中的应用

作者简介:刘晓明(1950~ ),男,上海人,副研究员,校长助理.
• 中图分类号: O241.6

Krylov Subspace Projection Method and ItsApplication on Oil Reservoir Simulation

• 摘要: Krylov子空间投影法是一类非常有效的大型线性代数方程组解法,随着左右空间Lm、Km的不同选取可以得到许多人们熟知的方法.按矩阵Hm的不同类型,将Krylov子空间方法分成两大类,简要分析了这两类方法的优缺点及其最新进展.将目前最为可靠实用的广义最小余量法(GMRES)应用于油藏数值模拟计算问题,利用矩阵分块技术,采用块拟消去法(PE)对系数阵进行预处理.计算结果表明本文的预处理GMRES方法优于目前使用较多的预处理正交极小化ORTHMIN方法,最后还讨论了投影类方法的局限和今后的可能发展方向.
•  [1] Saad Y.Krylov subspace methods for solving large unsymmetric linear systems[J].Mathematics of Computations,1981,37(155):105~126. [2] Saad Y,Schultz M A.Conjugate gradient-like algorithm for solving nonsymmetric linear systems[J].Mathematics of Computations,1985,44(170):417~424. [3] Saad Y,Schultz M A.GMRES:A generalized minimum residual algorithm for solving nonsymmetric linear systems[J].SIAM J Sci Comput,1986,7(3):859~869. [4] Brown P N.A theoretical comparision of the ARNOLDI and GMRES algorithms[J].SIAM J Sci Comput,1991,12(1):58~78. [5] Desa C,Irani K M,Ribbens C J,et al.Preconditioned iterative methods for homotopy curve trackling[J].SIAM J Sci Comput,1992,13(1):30~45. [6] Ern A,Giovangigli V,Keyes D E,et al.Towards polyalgorithm linear system solvers for nonlinear elliptic problems[J].SIAM J Sci Comput,1994,15(3):681~703. [7] 卢志明.油藏数值模拟中的一种新方法[D].硕士论文.上海:复旦大学,1993. [8] Tan L H,Bathe K J.Studies of finite element procedures-the conjugate gradient and GMRES methods in ADINA and ADINA-F[J].Computers &Structure,1991,40(2):441~449. [9] Frommer A,Glassner U.Restarted GMRES for the shifted linear systems[J].SIAM J Sci Comput,1998,19(1):15~26. [10] Paige C C,Saunders M A.Solution of sparse indefinite systems of linear equations[J].SIAM J Numer Anal,1975,12(4):617~629. [11] Sonneveld P.CGS,a fast Lanczos-type solver for nonsymmetric linear system[J].SIAM J Sci Statist Comput,1989,10(1):36~52. [12] Freund R W.A Transpoe-free quasi-minimal residual algorithm for non-Hermitian linear systems[J].Numer Maths,1992,14(2):470~482. [13] Parlett B N,Taylor D R,Liu Z A.A look-ahead Lanczos algorithm for unsymmetric matrices[J].Math Comp,1985,(44):105~124. [14] Freund R W,Nachtigal N M.QMR:a quasi-minimal residual methods for non-Hermitian linear systems[J].Numer Math,1991,(60):315~339. [15] Zhou L,Walker H F.Residual smoothing techniques for iterative methods[J].SIAM J Sci Comput,1994,15(2):297~312. [16] Van Der Worst H A.Bi-CGSTAB:a fast and smoothly convergence variant of Bi-CG for the solution of nonsymmetric linear systems[J].SIAM J Sci Comput,1992,13(2):631~644. [17] Chan T F,Gallopoulos E,Simoncini V,et al.A quasi-minimal residual variant of the Bi-SGSTAB algorithm for nonsymmetric systems[J].SIAM J Sci Comput,1994,15(2):338~347. [18] Ressel K J,Gutknecht M H.QMR smoothing for Lanczos-type product methods based on three-term recurrences[J].SIAM J Sci Comput,1998,19(1):55~73. [19] 陈月明.油藏数值模拟基础[M].山东:石油大学出版社,1989. [20] 胡家赣.线性代数方程组的迭代解法[M].北京:科学出版社,1991. [21] Saad Y.A flexible inner-outer preditioned GMRES algorithm[J].SIAM J Sci Comput,1993,14(2):461~469. [22] Kasenally E M.GMBACK:a generalised minimum backward error algorithm for nonsymmetric linear systems[J].SIAM J Sci Comput,1995,16(3):698~719. [23] Saunders M A,Simon H D,Yips E L.Two conjugate-gradient-type methods for unsymmetric linear equations[J].SIAM J Numer An al,1988,25(4):927~940.
计量
• 文章访问数:  2461
• HTML全文浏览量:  77
• PDF下载量:  722
• 被引次数: 0
出版历程
• 收稿日期:  1999-03-15
• 修回日期:  1999-12-10
• 刊出日期:  2000-06-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈