留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高精度隐式参差光滑格式的构造

倪明玖 席光 王尚锦

倪明玖, 席光, 王尚锦. 高精度隐式参差光滑格式的构造[J]. 应用数学和力学, 2000, 21(4): 365-372.
引用本文: 倪明玖, 席光, 王尚锦. 高精度隐式参差光滑格式的构造[J]. 应用数学和力学, 2000, 21(4): 365-372.
Ni Migjiu, Xi Guang, Wang Shangjin. Construction of High-Order Accuracy Implicit Residual Smoothing Schemes[J]. Applied Mathematics and Mechanics, 2000, 21(4): 365-372.
Citation: Ni Migjiu, Xi Guang, Wang Shangjin. Construction of High-Order Accuracy Implicit Residual Smoothing Schemes[J]. Applied Mathematics and Mechanics, 2000, 21(4): 365-372.

高精度隐式参差光滑格式的构造

基金项目: 国家教委博士点资金
详细信息
  • 中图分类号: O363

Construction of High-Order Accuracy Implicit Residual Smoothing Schemes

  • 摘要: 参照Lax-Wendroff格式的构造方法,就双曲型方程、抛物型方程和双曲-抛物型方程,构造了一种新的IRS(implicit residual smoothing)格式。该IRS格式有二阶或三阶时间精度且大大地拓宽了解的稳定区域和CFL数。这种新的IRS格式有中心加权型和迎风偏向型两种,并用von-Neumann分析方法分析了格式的稳定范围。讨论了在透平机械中广泛应用的Dawes方法的局限性,发现该方法对稳态问题得出的解与时间步长的选取有关,对粘性问题求解时,时间步长受严格限制。最后,结合TVD(total variation diminishing)格式和四阶Runge-Kutta技术,用IRS格式和Dawes方法对二维反射激波场进行了数值模拟,数值结果支持本文的分析结论。
  • [1] 傅德薰.流体力学数值模拟[M].北京:国防工业出版社,1993.
    [2] Hirsch C.Numerical Computation of Internal and External Flows,Vol.1:Fundamental of Numerical Discretization[M].Chichester:John Wiley and Sons,1988.
    [3] MacCormack R W.Current status of numerical solutions of Navier-Stokes equations[Z].AIAA Paper,85-032,1985.
    [4] Jameson A,Baker T J.Solution of the Euler equations for complex configurations[Z].AIAA Paper,83-1929,1983.
    [5] Blazek J,Kroll N,Rossow C C.A comparison of several implicit residual smoothing methods[A].In:ICFD Conference on Numerical Methods for Fluid Dynamics[C].UK:Reading,1992.
    [6] Lax P D,Wendroff B.Systems of conservation laws[J].Comm Pure Appl Math,1960,13(1):217.
    [7] Dawes W N.Application of a three-dimensional viscous compressible flow solver to a high-speed centrifugal rotor-secondary flow and loss generation[Z].IMechE,C261/87,1987.
    [8] Yee H C.Construction of explicit and implicit symmetric TVD schemes and their applications[J].J Comput Phys,1987,68(1):151~179.
    [9] Yee H C.High-resolution shock-capturing schemes for inviscid and viscous hypersonic flows[J].J Comput Phys,1990,88(1):31~61.
    [10] Pullium T H,Chaussee D S.A diagonal form of an implicit approximate factorization algorithm[J].J Comput Phys,1981,39(2):347~363.
    [11] Chakravathy S R.Relaxation methods for unfactored implicit upwind schemes[Z].AIAA Paper,84-0165,1984.
    [12] Hathaway M D,Criss R M,Wood J R,et al.Experimental and computational investigation of the NASA low-speed centrifugal compressor flow field[J].ASME J Turbomachinery,1993,115(3):527~542.
    [13] Storer J A.Cumpsty N A.Tip leakage flow in axial compressors[J].ASME J Turbomachinery,1991,113(2):252~259.
    [14] Krain H,Hoffman W.Verification of an impeller design by laser measurements and 3D-viscous flow calculations[Z].ASME,89-GT-159,1989.
    [15] Harten A.High resolution schemes for hyperbolic conservation laws[J].J Comput Phys,1983,49(2):357~393.
    [16] Sweby P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Numer Anal,1984,21(5):995~1011.
  • 加载中
计量
  • 文章访问数:  2858
  • HTML全文浏览量:  148
  • PDF下载量:  3380
  • 被引次数: 0
出版历程
  • 收稿日期:  1998-01-06
  • 修回日期:  1999-12-03
  • 刊出日期:  2000-04-15

目录

    /

    返回文章
    返回