On the Critical Points of the Map
-
摘要: 对于Hilbert空间上有界线性算子A、B、C,考虑了当A有一个广义逆A-使得(AA-)*=AA-,B有一个广义逆B-使得(B-B)*= B-B时,映射 Fp:X→‖AXB-C‖pp临界点的特征的一般形式(1<p<∞),推广了P.J.Mahar的关于对p=2时的结果,并指出该定理可推广到多个算子的情形。Abstract: Suppose A,B and C are the bounded linear operators on a Hilbert space H,when A has a generalized inverse A- such that (AA-)*=AA- and B has a generalized inverse B- such that (B-B)*=B-B, the general characteristic forms for the critical points of the map Fp:X→‖AXB-C‖pp(1<p<∞),have been obtained,it is a generalization for P.J.Maher result about p=2.Similarly,the same question has been discussed for several operators.
-
Key words:
- generalized inverse /
- critical point /
- polar decomposition
-
[1] Pensore R.A generalized inverse for matrices[J].Proc Cambridge Phil Soc,1955,51(4):406~413. [2] John G Aiken,John A Erdos,Jerrome A Goldsteir.Unity approximation of positive operators[J].Illinois Journal of Mathematics,1980,24(1):61~71. [3] Maher P J.Some operator inequalities concerning generalized inverses[J].Illinois Journal of Mathematics,1990,34(3):503~514. [4] Ringrose J R.Compact Non-Self-Adjoint Operators[M].New York:Van Nonstrand-Reinhold,1971.
计量
- 文章访问数: 2000
- HTML全文浏览量: 87
- PDF下载量: 485
- 被引次数: 0