## 留言板

 引用本文: 封卫兵, 李开泰. 两同心旋转球间流动的弱解的存在唯一性[J]. 应用数学和力学, 2000, (1): 61-66.
Feng Weibing, Li Kaitai. The Existence and Uniqueness of Weak Solution of the Flow Between Two Concentric Rotating Spheres[J]. Applied Mathematics and Mechanics, 2000, (1): 61-66.
 Citation: Feng Weibing, Li Kaitai. The Existence and Uniqueness of Weak Solution of the Flow Between Two Concentric Rotating Spheres[J]. Applied Mathematics and Mechanics, 2000, (1): 61-66.

## 两同心旋转球间流动的弱解的存在唯一性

###### 作者简介:封卫兵(1962~ ),男,讲师,博士后,研究方向:偏微分方程的计算方法,已发表论文10余篇.
• 中图分类号: O241.82

## The Existence and Uniqueness of Weak Solution of the Flow Between Two Concentric Rotating Spheres

• 摘要: 研究了两个同心旋转球间的轴对称不可压缩的粘性流动.该流动广泛应用于大气物理和地球物理等学科中,为了得到该流动的流函数-速度形式的Navier-Stokes方程的弱解的存在性和唯一性,首先发现了该方程中非线性项之间的关系,并引入一个有限维的辅助问题,通过紧性而得到了结论.
•  [1] Khlebutin G N.Stability of fluid motion between a rotating and a stationary concentric sphere[J].Fluid Dynamics,1986,3:31～34. [2] Marcus PS,Tuckerman L S.Simulation of flow between two concentric rotating spheres,Part1,Steady states[J].J Fluid Mech,1987,185:1～30. [3] Marcus PS,Tuckerman L S.Simulation of flow between two concentric rotating spheres,Part2,Transition[J].J Fluid Mech,1987,185:31～66. [4] Teman R.Navier-Stokes Equation[M].Amsterdam,New York:North-Holland,1984. [5] 李开泰,马逸尘.数理方程Hilbert空间方法[M].西安:西安交通大学出版社,1992. [6] Glowinski R.Numerical Methods for Nonlinear Variational Problems[M].New York:Springer,1984. [7] Tuckerman L S.Formation of Taylor vortices in spherical conette flow[D].Ph.D.Thesis.Massachusetts:Massachusetts Institute of Technology,1983.

##### 计量
• 文章访问数:  1886
• HTML全文浏览量:  35
• PDF下载量:  580
• 被引次数: 0
##### 出版历程
• 收稿日期:  1997-08-11
• 修回日期:  1999-07-13
• 刊出日期:  2000-01-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈