## 留言板

 引用本文: 刘先斌, 陈大鹏, 陈虬. 实噪声参激一类余维2分叉系统的最大Lyapunov指数(Ⅰ)[J]. 应用数学和力学, 1999, 20(9): 902-912.
Liu Xianbin, Chen Dapeng, Chen Qiu. On the Maximal Lyapunov Exponent for a Real Noise Parametrically Excited Co-Dimension Two Bifurcation System(Ⅰ)[J]. Applied Mathematics and Mechanics, 1999, 20(9): 902-912.
 Citation: Liu Xianbin, Chen Dapeng, Chen Qiu. On the Maximal Lyapunov Exponent for a Real Noise Parametrically Excited Co-Dimension Two Bifurcation System(Ⅰ)[J]. Applied Mathematics and Mechanics, 1999, 20(9): 902-912.

## 实噪声参激一类余维2分叉系统的最大Lyapunov指数(Ⅰ)

###### 作者简介:刘先斌(1965~ ),男,博士,副教授,已发表论文30余篇.
• 中图分类号: O211.63

## On the Maximal Lyapunov Exponent for a Real Noise Parametrically Excited Co-Dimension Two Bifurcation System(Ⅰ)

• 摘要: 对于三维中心流形上实噪声参激的一类余维2分叉系统,为使模型更具有一般性,取系统的参激实噪声为一线性滤波系统的输出-零均值的平稳高斯扩散过程,并满足细致平衡条件.并在此基础上首次使用Arnold的渐近方法以及Fokker-Planck算子的特征谱展式,求解不变测度以及最大的Lyapunov指数的emax的渐近展式.
•  [1] Arnold L,Wihstutz V.Lyapunov Exponents[M].Lecture Notes in Mathematics,1186.Berlin:Springer-Verlag,1986. [2] Arnold L,Crauel H,Eckmann J P.Lyapunov Exponents[M],Lecture Notesin Mathe matics,1486.Berlin:Springer-Verlag,1991. [3] 刘先斌.随机力学系统的分叉行为与变分方法研究[D].博士学位论文.成都:西南交通大学,1995. [4] 刘先斌,陈虬,陈大鹏.非线性随机动力学系统的稳定性和分岔研究[J].力学进展,1996,26(4):437~53. [5] 陈虬,刘先斌.随机稳定性和随机分岔研究进展[R].第七届现代数学和力学大会邀请报告.1997年11 月,上海. [6] Khasminskii R Z.Stochastic Stability of Differential Equations[M].Alphenaan den Rijin,the Netherlands:Sijthoff and Noord hoff,1980. [7] Arnold L,Papanicolaou G,Wihstutz V.Asymptotic analysis of the Lyapunov exponentsand rotation numbers of the random oscillator and applications[J].SIAM J Appl Math,1986,46(3):427~450. [8] Arnold L.Lyapunov exponents of nonlinear stochastic systems[A].In:F Ziegler,GI Schuellereds.Nonlinear Stochastic Dynamic Engrg Systems,Berlin,New York:Springer-Verlag,1987,181~203. [9] Arnold L,Boxler P.Eigenvalues,bifurcation and center manifolds in the presence of noise[A].In:CM Dafermos,G Ladas,G.Papannico laoueds.Differential Equations[M].New York:Marcel Dekker Inc,1990,33~50. [10] Ariaratnam S T,Xie W C.Sensitivity of pitchfork bifurcation to stochastic perturbation[J].Dyna & Stab Sys,1992,7(3):139~150. [11] Ariaratnam S T,Xie W C.Lyapunov exponents and stochastic stability ofcoupled linearsystems underrealnoise excitation[J].ASME J Appl Mech,1992,59(3):664~673. [12] Ariaratnam S T,Xie W C.Lyapunov exponents and stochastic stability of two-dimensional parametrically excited random systems[J].ASME J Appl Mech,1993,60(5):677~682. [13] Kozin F.Stability of the Linear Stochaxtic Systems[M].Lecture Notes in Math,294.New York:Springer-Verlag,1972,186~229. [14] Namachchivaya Sri N,Ariaratnam S T.Stochastically perturbed Hoph bifurcation[J].Int J Nonlinear Mech,1987,22(5):363~373. [15] Namachchivaya Sri N.Stochastic stability of a gyropendulum underrandom verticalsup portexcitation[J].J Sound & Vib,1987,119(2):363~373. [16] Namachchivaya Sri N.Hopf bifurcation in the presence of both parametric and externalstochastic excitation[J].A S M E J Appl Mech,1998,55(4):923~930. [17] Namachchivaya Sri N,Talwar S.Maximal Lyapunov exponent and rotation number forst ochastically peturbed codimension two bifurcation[J].J Sound & Vib,1993,169(3):349~372. [18] 刘先斌,陈虬,陈大鹏.白噪声参激 Hopf 分岔系统的两次分岔研究[J].应用数学和力学,1997,18(9):779~788. [19] 刘先斌,陈虬.实噪声参激Hopf分岔系统研究[J].力学学报,1997,29(2):158~166. [20] 刘先斌,陈虬,孙训方.白噪声参激一类余维2分岔系统研究[J].力学学报,1997,29(5):563~572. [21] Pardoux E,Wihstutz V.Lyapunov exponentand rotation number of two imensionallinear stochastic systems with small diffusion[J].SIAM J Appl Math,1988,48(2):442~457. [22] 朱位秋.随机振动[M].北京:科学出版社,1992. [23] Roy R V.Stochastic averaging of oscillators excited by coloured Gaussian processes[J].Int J Nonlinear Mech,1994,29(4):461~475. [24] Dygas M M K,Matkowsky B J,Schuss Z.Stochastic stability of nonlinear oscillators[J].SIAM J Appl Math,1988,48(5):1115~1127.
##### 计量
• 文章访问数:  2749
• HTML全文浏览量:  169
• PDF下载量:  652
• 被引次数: 0
##### 出版历程
• 收稿日期:  1998-05-29
• 修回日期:  1999-04-15
• 刊出日期:  1999-09-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈