留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实噪声参激一类余维2分叉系统的最大Lyapunov指数(Ⅰ)

刘先斌 陈大鹏 陈虬

刘先斌, 陈大鹏, 陈虬. 实噪声参激一类余维2分叉系统的最大Lyapunov指数(Ⅰ)[J]. 应用数学和力学, 1999, 20(9): 902-912.
引用本文: 刘先斌, 陈大鹏, 陈虬. 实噪声参激一类余维2分叉系统的最大Lyapunov指数(Ⅰ)[J]. 应用数学和力学, 1999, 20(9): 902-912.
Liu Xianbin, Chen Dapeng, Chen Qiu. On the Maximal Lyapunov Exponent for a Real Noise Parametrically Excited Co-Dimension Two Bifurcation System(Ⅰ)[J]. Applied Mathematics and Mechanics, 1999, 20(9): 902-912.
Citation: Liu Xianbin, Chen Dapeng, Chen Qiu. On the Maximal Lyapunov Exponent for a Real Noise Parametrically Excited Co-Dimension Two Bifurcation System(Ⅰ)[J]. Applied Mathematics and Mechanics, 1999, 20(9): 902-912.

实噪声参激一类余维2分叉系统的最大Lyapunov指数(Ⅰ)

基金项目: 国家自然科学基金资助项目(19602016)
详细信息
    作者简介:

    刘先斌(1965~ ),男,博士,副教授,已发表论文30余篇.

  • 中图分类号: O211.63

On the Maximal Lyapunov Exponent for a Real Noise Parametrically Excited Co-Dimension Two Bifurcation System(Ⅰ)

  • 摘要: 对于三维中心流形上实噪声参激的一类余维2分叉系统,为使模型更具有一般性,取系统的参激实噪声为一线性滤波系统的输出-零均值的平稳高斯扩散过程,并满足细致平衡条件.并在此基础上首次使用Arnold的渐近方法以及Fokker-Planck算子的特征谱展式,求解不变测度以及最大的Lyapunov指数的emax的渐近展式.
  • [1] Arnold L,Wihstutz V.Lyapunov Exponents[M].Lecture Notes in Mathematics,1186.Berlin:Springer-Verlag,1986.
    [2] Arnold L,Crauel H,Eckmann J P.Lyapunov Exponents[M],Lecture Notesin Mathe matics,1486.Berlin:Springer-Verlag,1991.
    [3] 刘先斌.随机力学系统的分叉行为与变分方法研究[D].博士学位论文.成都:西南交通大学,1995.
    [4] 刘先斌,陈虬,陈大鹏.非线性随机动力学系统的稳定性和分岔研究[J].力学进展,1996,26(4):437~53.
    [5] 陈虬,刘先斌.随机稳定性和随机分岔研究进展[R].第七届现代数学和力学大会邀请报告.1997年11 月,上海.
    [6] Khasminskii R Z.Stochastic Stability of Differential Equations[M].Alphenaan den Rijin,the Netherlands:Sijthoff and Noord hoff,1980.
    [7] Arnold L,Papanicolaou G,Wihstutz V.Asymptotic analysis of the Lyapunov exponentsand rotation numbers of the random oscillator and applications[J].SIAM J Appl Math,1986,46(3):427~450.
    [8] Arnold L.Lyapunov exponents of nonlinear stochastic systems[A].In:F Ziegler,GI Schuellereds.Nonlinear Stochastic Dynamic Engrg Systems,Berlin,New York:Springer-Verlag,1987,181~203.
    [9] Arnold L,Boxler P.Eigenvalues,bifurcation and center manifolds in the presence of noise[A].In:CM Dafermos,G Ladas,G.Papannico laoueds.Differential Equations[M].New York:Marcel Dekker Inc,1990,33~50.
    [10] Ariaratnam S T,Xie W C.Sensitivity of pitchfork bifurcation to stochastic perturbation[J].Dyna & Stab Sys,1992,7(3):139~150.
    [11] Ariaratnam S T,Xie W C.Lyapunov exponents and stochastic stability ofcoupled linearsystems underrealnoise excitation[J].ASME J Appl Mech,1992,59(3):664~673.
    [12] Ariaratnam S T,Xie W C.Lyapunov exponents and stochastic stability of two-dimensional parametrically excited random systems[J].ASME J Appl Mech,1993,60(5):677~682.
    [13] Kozin F.Stability of the Linear Stochaxtic Systems[M].Lecture Notes in Math,294.New York:Springer-Verlag,1972,186~229.
    [14] Namachchivaya Sri N,Ariaratnam S T.Stochastically perturbed Hoph bifurcation[J].Int J Nonlinear Mech,1987,22(5):363~373.
    [15] Namachchivaya Sri N.Stochastic stability of a gyropendulum underrandom verticalsup portexcitation[J].J Sound & Vib,1987,119(2):363~373.
    [16] Namachchivaya Sri N.Hopf bifurcation in the presence of both parametric and externalstochastic excitation[J].A S M E J Appl Mech,1998,55(4):923~930.
    [17] Namachchivaya Sri N,Talwar S.Maximal Lyapunov exponent and rotation number forst ochastically peturbed codimension two bifurcation[J].J Sound & Vib,1993,169(3):349~372.
    [18] 刘先斌,陈虬,陈大鹏.白噪声参激 Hopf 分岔系统的两次分岔研究[J].应用数学和力学,1997,18(9):779~788.
    [19] 刘先斌,陈虬.实噪声参激Hopf分岔系统研究[J].力学学报,1997,29(2):158~166.
    [20] 刘先斌,陈虬,孙训方.白噪声参激一类余维2分岔系统研究[J].力学学报,1997,29(5):563~572.
    [21] Pardoux E,Wihstutz V.Lyapunov exponentand rotation number of two imensionallinear stochastic systems with small diffusion[J].SIAM J Appl Math,1988,48(2):442~457.
    [22] 朱位秋.随机振动[M].北京:科学出版社,1992.
    [23] Roy R V.Stochastic averaging of oscillators excited by coloured Gaussian processes[J].Int J Nonlinear Mech,1994,29(4):461~475.
    [24] Dygas M M K,Matkowsky B J,Schuss Z.Stochastic stability of nonlinear oscillators[J].SIAM J Appl Math,1988,48(5):1115~1127.
  • 加载中
计量
  • 文章访问数:  2749
  • HTML全文浏览量:  169
  • PDF下载量:  652
  • 被引次数: 0
出版历程
  • 收稿日期:  1998-05-29
  • 修回日期:  1999-04-15
  • 刊出日期:  1999-09-15

目录

    /

    返回文章
    返回