## 留言板

Bingham流体数值模拟的双罚函数—正交投影的隐式求解方法

 引用本文: 沙德松, 郭杏林, 顾元宪. Bingham流体数值模拟的双罚函数—正交投影的隐式求解方法[J]. 应用数学和力学, 1998, 19(8): 678-688.
Sha Desong, Guo Xinglin, Gu Yuanxian. An Implicit Solution of Bi-Penalty Approximation with Orthogonality Projection for the Numerical Simulation of Bingham Fluid Flow[J]. Applied Mathematics and Mechanics, 1998, 19(8): 678-688.
 Citation: Sha Desong, Guo Xinglin, Gu Yuanxian. An Implicit Solution of Bi-Penalty Approximation with Orthogonality Projection for the Numerical Simulation of Bingham Fluid Flow[J]. Applied Mathematics and Mechanics, 1998, 19(8): 678-688.

## Bingham流体数值模拟的双罚函数—正交投影的隐式求解方法

• 中图分类号: O242;O351

## An Implicit Solution of Bi-Penalty Approximation with Orthogonality Projection for the Numerical Simulation of Bingham Fluid Flow

• 摘要: 本文对Bingham流体给出了双罚函数逼近和正交投影的隐式求解方法.这个方法把Bingham流体处理为承受不等式应力约束的Newton流体的逼近解.有效地模拟了可以出现流动或不流动的“刚性核”的Bingham流体的流动问题.
•  [1] John A.Tichym,Hydrodynamic lubrication theory for the Bingham plastic flow model,J.Rheol.,3(4)(1991),477-496. [2] G.迪沃,J.L.利瓮斯,《力学和物理学中的变分不等方程》,王耀东译,科学出版社(1987). [3] J.E.Stangroom,The Bingham plastic model of ER fluids and its implications,Proceedings of the Second International Conference on ER Fluids,Technomic,Lancaster,PA(1990),41-52. [4] Therese C.Jordan,Electrortheology,IEEE Transaction on Electrical Insulation,24(5)(1989)849-878. [5] Thomas J.R.Hughes,The Finite Element Method,Prentice-Hall,Inc.,Englewood Cliffs,New Jersey 07632(1987). [6] K.W.Wang,Y.S.Kim and D.B.Shea,Structural vibration control via electrorheological-fluid based actuator with adaptive viscous and frictional damping,J.Sound Vibration,177(2)(1994)227-237. [7] J.Lubliner,Plasticity Theory,Macmillan Publishingn Company,New York(1990).

##### 计量
• 文章访问数:  1818
• HTML全文浏览量:  29
• PDF下载量:  488
• 被引次数: 0
##### 出版历程
• 收稿日期:  1997-03-26
• 修回日期:  1998-03-16
• 刊出日期:  1998-08-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈