留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bingham流体数值模拟的双罚函数—正交投影的隐式求解方法

沙德松 郭杏林 顾元宪

沙德松, 郭杏林, 顾元宪. Bingham流体数值模拟的双罚函数—正交投影的隐式求解方法[J]. 应用数学和力学, 1998, 19(8): 678-688.
引用本文: 沙德松, 郭杏林, 顾元宪. Bingham流体数值模拟的双罚函数—正交投影的隐式求解方法[J]. 应用数学和力学, 1998, 19(8): 678-688.
Sha Desong, Guo Xinglin, Gu Yuanxian. An Implicit Solution of Bi-Penalty Approximation with Orthogonality Projection for the Numerical Simulation of Bingham Fluid Flow[J]. Applied Mathematics and Mechanics, 1998, 19(8): 678-688.
Citation: Sha Desong, Guo Xinglin, Gu Yuanxian. An Implicit Solution of Bi-Penalty Approximation with Orthogonality Projection for the Numerical Simulation of Bingham Fluid Flow[J]. Applied Mathematics and Mechanics, 1998, 19(8): 678-688.

Bingham流体数值模拟的双罚函数—正交投影的隐式求解方法

基金项目: * 国家自然科学基金
详细信息
  • 中图分类号: O242;O351

An Implicit Solution of Bi-Penalty Approximation with Orthogonality Projection for the Numerical Simulation of Bingham Fluid Flow

  • 摘要: 本文对Bingham流体给出了双罚函数逼近和正交投影的隐式求解方法.这个方法把Bingham流体处理为承受不等式应力约束的Newton流体的逼近解.有效地模拟了可以出现流动或不流动的“刚性核”的Bingham流体的流动问题.
  • [1] John A.Tichym,Hydrodynamic lubrication theory for the Bingham plastic flow model,J.Rheol.,3(4)(1991),477-496.
    [2] G.迪沃,J.L.利瓮斯,《力学和物理学中的变分不等方程》,王耀东译,科学出版社(1987).
    [3] J.E.Stangroom,The Bingham plastic model of ER fluids and its implications,Proceedings of the Second International Conference on ER Fluids,Technomic,Lancaster,PA(1990),41-52.
    [4] Therese C.Jordan,Electrortheology,IEEE Transaction on Electrical Insulation,24(5)(1989)849-878.
    [5] Thomas J.R.Hughes,The Finite Element Method,Prentice-Hall,Inc.,Englewood Cliffs,New Jersey 07632(1987).
    [6] K.W.Wang,Y.S.Kim and D.B.Shea,Structural vibration control via electrorheological-fluid based actuator with adaptive viscous and frictional damping,J.Sound Vibration,177(2)(1994)227-237.
    [7] J.Lubliner,Plasticity Theory,Macmillan Publishingn Company,New York(1990).
  • 加载中
计量
  • 文章访问数:  1818
  • HTML全文浏览量:  29
  • PDF下载量:  488
  • 被引次数: 0
出版历程
  • 收稿日期:  1997-03-26
  • 修回日期:  1998-03-16
  • 刊出日期:  1998-08-15

目录

    /

    返回文章
    返回