## 留言板

 引用本文: 陈至达. 弹塑性有限变形力学的反逆渐近解法[J]. 应用数学和力学, 1997, 18(11): 959-966.
Chen Zhida. Inverse Asymptotic Solution Method for Finite Deformation Elasto-Plasticity[J]. Applied Mathematics and Mechanics, 1997, 18(11): 959-966.
 Citation: Chen Zhida. Inverse Asymptotic Solution Method for Finite Deformation Elasto-Plasticity[J]. Applied Mathematics and Mechanics, 1997, 18(11): 959-966.

## Inverse Asymptotic Solution Method for Finite Deformation Elasto-Plasticity

• 摘要: 最近几十年中,近代力学的非线性有限变形理论在概念与方法上有许多重要的进展([1],[2],[3]等).本文旨在说明自然拖带系描述法与Stokes-陈分解定理如何结合反过渐近解法于有效解答弹塑性有限变形力学问题应用至工程设计目的.文中举半平面冲压大变形为典型数值解例.
•  [1] 陈至达,《有理力学》,中国矿业大学出版社,徐州(1988). [2] 陈至达,《杆、板、壳大变形理论》,科学出版社,北京(1994). [3] P.Liand Z,D,Chen,The updated co-moving coordinate formulation of continuum mechanics based on the S-R decomposition theorem,Computer Method in-Applied Mechanics and Engineering,114(1994),21-34. [4] E,M,Cegal,elc,Research on Plastic Deformation of Metal by Moirc Method,Metallugical Publisher,Moscow(1974),154. [5] M,M,Frocht,Photoelasticity,Vol.Ⅱ,John Wiley&Sons(1948),76. [6] Z.D,Chen and X.C.Liu,Nonlinear geo metric field theory and viscoplasticity of large deform anon,MD,Vol 69-1,Proeedings of the ASME Materials Division,Editurs,N,R.ScGttc's,etc.(1995),429-440.

##### 计量
• 文章访问数:  1433
• HTML全文浏览量:  23
• PDF下载量:  483
• 被引次数: 0
##### 出版历程
• 收稿日期:  1996-03-25
• 修回日期:  1997-05-20
• 刊出日期:  1997-11-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈