留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用“调和函数”表示的压电介质平面问题的通解*

丁皓江 王国庆 陈伟球

丁皓江, 王国庆, 陈伟球. 用“调和函数”表示的压电介质平面问题的通解*[J]. 应用数学和力学, 1997, 18(8): 703-710.
引用本文: 丁皓江, 王国庆, 陈伟球. 用“调和函数”表示的压电介质平面问题的通解*[J]. 应用数学和力学, 1997, 18(8): 703-710.
Ding Haojiang, Wang Guoqing, Chen Weiqiu. General Solution of Plane Problem of Piezoelectric Media Expressed by“Harmonic Functions”[J]. Applied Mathematics and Mechanics, 1997, 18(8): 703-710.
Citation: Ding Haojiang, Wang Guoqing, Chen Weiqiu. General Solution of Plane Problem of Piezoelectric Media Expressed by“Harmonic Functions”[J]. Applied Mathematics and Mechanics, 1997, 18(8): 703-710.

用“调和函数”表示的压电介质平面问题的通解*

基金项目: * 国家自然科学基金

General Solution of Plane Problem of Piezoelectric Media Expressed by“Harmonic Functions”

  • 摘要: 本文首先从压电介质平面问题基本方程出发,引入一个位移函数,导出其通解,然后利用推广的Almansi定理,将通解化为简单形式,即通过三个“调和函数”来表示所有的物理量,其次,推导了楔形体顶端受集中力和点电荷作用时有限形式的解,退化可得半无限平面直线边界受集中力和点电荷的解.
  • [1] Y. Shindo, E. Ozava and J. P. Nowacki. Singular stress and electric fields of a crackedpiezoelectric strip, International Journal of Apphed Electromc Materials. 1 (1990), 77~87.
    [2] Z. Suo. C. M. Kuo. D. M. Barnett and J. R. Willis, Fracture mechanics for piezoelectricceramics, Journal of the Mechanics and Physics of Solids, 40 (1992), 739~765.
    [3] M. L. Dunn and M. Taya. An analysis of piezoelectric composite materials containingellipsoidal inhomogeneities. Proceeding of the Royal Society of London-Series A, 443(1993). 245~287.
    [4] T. Y. Chen. Exact relations of incIusions in piezoelectric media-InternaIional Journal ofEngineering Science, 32 (1994). 265~287.
    [5] K. H. Sung, C. Keilers and F. K. Chang. Finite element analysis of composite structurescontaining distributed piezoceramic sensors and actuators, AIAA Journal, 30 (1993),772~780.
    [6] Z. Wang and B. Zheng. The general solution of three-dimensional problem inpiezoelectric media. International Journal of Solids and Structures 32 (1995), 105~115.
    [7] H. J. Ding, B. Chen and J. Liang, General solutions for coupled equations forpiezoelectric media, International Journal of Solids and Structures, 33 (1996), 2283~2298.
    [8] S. P. Timoshenko and J. N. Goodier, Theory of Etosticity, McGraw-Hill (1970).
    [9] S. G. Lekhniskii. Theory of Anisotropic Plate (Hu Haichang transl.), Science Press (1955).(Chinese version)
    [10] 丁皓江、李育,圆柱型各向异性弹性力学平面问题,应用力学学报,11(1994), 11-18
    [11] H. A. Sosa and M. A. Castro, On concentrated loads at the boundary of a piezoelectrichalf plane, Journal of the Mechanics and Physics of Solids, 42 (1994), 1105~1122.
    [12] H. A. Sosa and M. A. Castro, Electroelastic analysis of piezoelectric laminatedstructures, Applied Mechanics Review, 46 (1993), 21~28.
    [13] R. A. Eubanks and E. Sternberg, On the axisymmetric problem of elastic theory for amedium with transverse isotropy, Journal of Rational Mechanics Analysis, 3 (1954), 89~101.
  • 加载中
计量
  • 文章访问数:  2200
  • HTML全文浏览量:  138
  • PDF下载量:  698
  • 被引次数: 0
出版历程
  • 收稿日期:  1996-01-08
  • 刊出日期:  1997-08-15

目录

    /

    返回文章
    返回