## 留言板

 引用本文: 牛玉清, 马兴瑞, 黄文虎. 非均匀介质中弹性波动方程的参数摄动法*[J]. 应用数学和力学, 1997, 18(7): 579-584.
Niu Yuqing, Ma Xingrui, Huang Wenhu. The Parameter Perturbation Method on Elastic Wave Equation in inhomogeneous Medium[J]. Applied Mathematics and Mechanics, 1997, 18(7): 579-584.
 Citation: Niu Yuqing, Ma Xingrui, Huang Wenhu. The Parameter Perturbation Method on Elastic Wave Equation in inhomogeneous Medium[J]. Applied Mathematics and Mechanics, 1997, 18(7): 579-584.

## The Parameter Perturbation Method on Elastic Wave Equation in inhomogeneous Medium

• 摘要: 本文通过对非均匀介质弹性波动方程中的介质参数引入背景场量和摄动量,得到以摄动项为次生源的均匀介质中的波动方程,利用Green函数理论化微分方程为积分方程;然后把均匀介质中的位移波场做为第一次迭代结果,代入积分方程进行位移波场的求解;当扰动量达50%时,此方法仍然有效,分析数值结果,从而对一般非均匀介质中的波场性质有了一个定性了解,结果与一般非均匀介质中的声波局部理论基本一致.
•  [1] Alvin J Rbbins Exact solutions of the Helmholtz equation for plane wave propagation in a medium with variable density and sound speed,J,Aeoust Soe.Am.,93(3) 0983). [2] Zhu Tianfei,A Ray-Kirchhoff method for body-wave calculation;n lnhompgeneous media:theory,Geophysical Journal,92 (1988),181-193. [3] J.E,Gubernatis,E,Domany and J.A,Krumnhansl,Formal aspects of the theory of the scattering of ultrasound by flaws in elastic materials,T.Appl.Phy.,48; (1977),2804-2811. [4] J.E,Gubarnatis,E.Domany,J.A,Krumnhansl and M.Huberman,The Born approximation in the theory of the scattering of elastic waves by flaws,J.Appl.Phy.,4(1977),2812-2819. [5] J.H,Rose and J,A,Krumnhansl,Determination of flaws characteristics from ultrasonic scattering data,J.Appl.Phy.,50,(1979),2951-2952. [6] 朱瑾、马兴瑞、黄文虎,二维弹性波几何反问题中的逆Born方法,哈尔滨工业大学学报,(1988),8-14. [7] Harry Gingold,Jianming She and William E,Iorumski,Local principles wave propagation in inhomogeneous media,J.Acoust,Soc,Am.,93(2) (1993).

##### 计量
• 文章访问数:  1877
• HTML全文浏览量:  70
• PDF下载量:  630
• 被引次数: 0
##### 出版历程
• 收稿日期:  1996-01-22
• 刊出日期:  1997-07-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈