## 留言板

 引用本文: 丁睿, 朱正佑, 程昌钧. 粘弹性薄板动力响应的边界元方法(Ⅰ)*[J]. 应用数学和力学, 1997, 18(3): 211-216.
Ding Rui, Zhu Zhengyou, Cheng Changjun. Boundary Element Method for Solving Dynamical Response of Viscoelastic Thin Plate (Ⅰ)[J]. Applied Mathematics and Mechanics, 1997, 18(3): 211-216.
 Citation: Ding Rui, Zhu Zhengyou, Cheng Changjun. Boundary Element Method for Solving Dynamical Response of Viscoelastic Thin Plate (Ⅰ)[J]. Applied Mathematics and Mechanics, 1997, 18(3): 211-216.

## Boundary Element Method for Solving Dynamical Response of Viscoelastic Thin Plate (Ⅰ)

• 摘要: 本文中我们给出了粘弹性薄板动力响应的边界元方法.在Laplace变换区域中,给出了基本解的两种近似方法,运用这些近似基本解建立了边界元方法,再利用改进的Bellman反交换技术,求得问题的解,计算表明该方法具有较高精度和较快收敛性.
•  [1] 孙炳南等,二维粘弹性结构动力响应的边界元方法分析,上海力学,11(1) (1990), [2] 孙炳南等,多相粘弹性结构的动力响应边界元分析,计算结构力学及其应用,7(3) (1990),19-21. [3] 杨挺青等,粘弹性基支粘弹性板轴对称问题的动力响应,力学学报,22(2) (1990). [4] 顾萍等,动力边界元法的正交多项式函数的近似基本解研究,计算结构力学及其应用,1(4),(1990) [5] F. Durbin, Numberical inversion of Laplace transform: An efficient improvement to Dubher and Abate's method, The Computer Journal, 17 (1974), 371~376. [6] M. K. Miller and W. T. Guy, Numerical inversion of the Laplace transform by use ofJacobi polynomials, SIAM J. Nulner. Anal., 3, 4 (1966), 624~635. [7] R. Bellman, R. E. Kalaba and J. Lockett, Numerical Inversion of the Laplace Trans form Amer. Elsevier Publ. Co. (1966). [8] C. A. Brebbia, Boundary Element Techniques: Theory and Applications in Engineering,Springer-Verlag (1984).

##### 计量
• 文章访问数:  1969
• HTML全文浏览量:  36
• PDF下载量:  550
• 被引次数: 0
##### 出版历程
• 收稿日期:  1996-01-15
• 刊出日期:  1997-03-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈